Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.6, 847-852, 2000
Potassium Titanate를 이용한 Sr과 Cs 이온 혼합용액의 이온교환 거동
Ion Exchange Behavior for Mixed Solution of Sr and Cs Ions with Potassium Titanate
고준위 폐액의 열발생 핵종인 세슘 및 스트론튬 제거를 위하여 내산성이 강한 potassium titanate(K2Ti4O9)를 합성하여 Sr과 Cs 이온 혼합용액에 대한 흡착평형 특성을 평가하였다. 티탄산 칼륨 흡착제는 Sr 이온에 선택적이었고, pH2의 산성용액에서 Sr 이온 및 Cs 이온의 분배계수(Kd)는 각각 3,300 mL/g과 200mL/g을 나타내었다. K2Ti4O9의 Sr과 Cs 이온에 대한 흡착평형 등온식으로 Langmuir, Freundlich, Dubinin-Polanyi model을 평가하였다. 이성분의 경우 모든 모델들이 실험 데이터를 잘 표현하였으나, 특히 Freundlich 모델과 Dubinin-Polanyi 모델들이 실험데이터를 정확하게 모사하였다. 반면에 다성분계의 경우, 이성분계 표준 등온선을 확장한 다성분 모델로는 예측할 수 없었으며 새로운 실험적 경험식인 수정된 Dubinin-Polanyi식을 이용하여 실험치를 정확히 예측할 수 있었다.
Potassium titanate ion exchanger was synthesized to use for removing strontium and caesium ions, which are the heat generation radionuclides in HLLW(high level liquid waste). Adsorption equilibria for Sr and Cs ions were evaluated with the synthetic potassium titanate(K2Ti4O9) ion exchanger. The potassium titanate ion exchanger showed selective adsorption for Sr ion over Cs ion. The distribution coefficients for Sr and Cs ions at pH 2 were 3,300 mL/g and 200 mL/g, respectively. Standard isotherm equations such as Langmuir, Freundlich and Dubinin-Polanyi equations were used to model the experimental data. For the binary data modeling, even though all models fit the data, Freundlich model and Dubinin-Polanyi model fit the experimental data more correctly. For multicomponent system, however, the experimental data could not be predicted from binary data using standard isotherms. While, a modified version of Dubinin-Polanyi equation, which is a semi-empirical equation, fit the experimental data accurately.
[References]
  1. Enarsson A, Landgren A, Liljenzin JO, Skalberg M, Spjuth L, Gudowski W, Wallenius J, "Partitioning and Transmutation(P&T) 1997," SKB annual Report, TR-98-14, 1998
  2. OECD/NEA: "Actinide Separation Chemistry in Nuclear Waste Streams and Materials," NEA/NSC/DOC(97)19, 1997
  3. Donovan TJ, "Incentives and Recent Proposals for Partitioning and Transmutation in the United States," DOE/OR/00033-T731, 1995
  4. Kondo Y, Takitsuka T, "Technology Assessment of Partitioning Process," JAERI-M-94-067, 1994
  5. Lee EH, Lim JK, Kim KW, Kwon SG, Yoo JH, Park HS, HWAHAK KONGHAK, 37(6), 897, 1999
  6. Lee EH, Kim KW, Chung DY, Kwon SG, Yoo JH, HWAHAK KONGHAK, 37(3), 439, 1999
  7. Kim EH, Kim YH, Chung DH, Lee EH, Yoo JH, HWAHAK KONGHAK, 35(2), 181, 1997
  8. Mimura H, Lehto J, Harjula R, J. Nucl. Sci. Technol., 34, 484, 1997
  9. Mardan A, Ajaz R, Mehmood A, Raza SM, Ghaffar A, Sep. Purif. Technol., 16, 147, 1999
  10. Robinson SM, Arnold WD, Byers CH, AIChE J., 40(12), 2045, 1994
  11. Mimura H, Kobayashi T, Akiba K, J. Nucl. Sci. Technol., 32(1), 60, 1995
  12. Sevesta F, Stefula V, J. Radioanal. Nucl. Chem., 140, 15, 1990
  13. Anthony RG, Philip CV, Dosch RG, Waste Manage., 13, 503, 1993
  14. Letho J, Brodkin L, Harjula R, Tusa E, Nuclear Technol., 127, 81, 1999
  15. DeFilippi I, Yates S, Sedath R, Straszewski M, Andren R, Gaita R, Sep. Sci. Technol., 32(1-4), 93, 1997
  16. Sighal AK, AIChE Symp. Ser., 74(179), 36, 1978
  17. Breck DW, "Zeolite Molecular Sieves," John Wiley & Sons, New York, 1974, 1974
  18. Franklin KR, Townsend RP, J. Chem. Soc.-Faraday Trans., 1, 81, 1985
  19. Ruthven DM, Goddard M, Zeolites, 6, 275, 1986
  20. Shallcross DC, Hermann CC, McCoy BJ, Chem. Eng. Sci., 43(2), 279, 1988
  21. Zheng Z, Anthony RG, Ind. Eng. Chem. Res., 36(6), 2427, 1997
  22. Ruthven DM, Sep. Purif. Methods, 5(2), 189, 1976
  23. Barrer RM, Murphy EVT, J. Chem. Soc., A, 2506, 1970
  24. Ruthven DM, "Principles of Adsorption and Adsorption Process," John Wiley & Sons, New York, 1984
  25. Jung KT, Moon JK, Shul YG, Oh WZ, HWAHAK KONGHAK, 34(4), 477, 1996
  26. Mimura H, Akiba K, J. Nucl. Sci. Technol., 30(5), 436, 1993
  27. Broul M, Nyvlt J, Sohnel O, "Physical Sciences Data 6, Solubility in Inorganic Two-Component Symtems," Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1981