Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.58, No.2, 171-175, 2020
고분자전해질 연료전지 고분자막의 특성 및 성능 비교
Comparison of Characteristics and Performance of Membrane in Proton Exchange Membrane Fuel Cells
고분자전해질 연료전지(PEMFC)에서 지지체에 의해 내구성을 향상시킨 강화막(Reinforced Membrane)의 개발이 국내에서 활발히 진행되고 있다. 본 연구에서는 4 종류의 강화막의 초기 성능 및 특성을 비교하였다. 고분자막의 C-F사슬의 양이 더 많은 강화막이 C-F사슬의 소수성 때문에 물 확산계수가 더 작음을 보였다. 고분자막 두께가 두꺼울수록 수소투과도가 감소하고 OCV가 증가함을 확인하였다. Short 저항이 1.5 Ωcm2이하인 막은 OCV가 0.9 V이하이고 성능도 최저여서 Short 저항이 3.0 Ωcm2이상이어야 함을 보였다. 현재 기준이 되는 국외 막과 비교했을 때 비슷한 국내 막도 있어서 PEMFC 고분자막의 국산화 가능성을 확인할 수 있었다.
In the proton exchange membrane fuel cells (PEMFC), the development of a reinforced membrane with improved durability by a support is actively in progress in Korea. In this study, the initial performance and characteristics of four types of reinforced membranes were compared. Reinforced membranes with higher amounts of CF chains in the polymer membrane showed lower water diffusion coefficients due to the hydrophobicity of the C-F chains. The thicker the polymer membrane, the more the hydrogen permeability decreased and the higher the OCV. Membrane with short resistance below 1.5 Ωcm2 showed OCV below 0.9 V and the lowest performance, so short resistance should be above 3.0 Ωcm2. Compared with the current standard membrane, there was a similar domestic membrane, which could confirm the possibility of localization of PEMFC polymer membrane.
[References]
  1. Wang G, Yu Y, Liu H, Gong C, Wen S, Wang X, Tu Z, Fuel Processing Technology, 179, 203, 2018
  2. Department of Energy, https://wwwenergygov/(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People’s Republic of China, http://wwwmostgovcn/eng(2016).
  6. Jahnke T, Futter G, Latz A, Malkow T, Papakonstantinou G, Tsotridis G, Schott P, Gerard M, Quinaud M, Quiroga M, Franco AA, Malek K, Calle-Vallejo F, de Morais RF, Kerber T, Sautet P, Loffreda D, Strahl S, Serra M, Polverino P, Pianese C, Mayur M, Bessler, J. Power Sources, 304, 207, 2016
  7. Wilkinson DP, St-Pierre J, Fundamentals Tech nology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  8. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31(13), 1831, 2006
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  10. Gore Enterprise Holdings, Inc, “Ion Conducting Membrane Having High Hardness And Dimensional Stability,” PCT/US2002/027338.
  11. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  12. Frank DC, Han L, Jeanette EO, ECS Transactions, 16(2), 1735, 2008
  13. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290, 2018
  14. Oh SH, Hwang BC, Lee MS, Lee DH, Park KP, Korean Chem. Eng. Res., 56(2), 151, 2018
  15. Lee DW, Hwang BC, Lim DH, Chung HB, You SE, Ku YM, Park KP, Korean Chem. Eng. Res., 57(3), 338, 2019