Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.58, No.1, 135-141, 2020
CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가
Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance
그래핀은 슈퍼커패시터의 전극소재로서 이상적인 물리적/화학적 물성을 지니고 있지만, 실제 장치에 적용하기에는 그 전기화학적 성능이 충분하지 못하다. 본 연구에서는 높은 전기 전도성 및 고다공성을 지닌 다층구조의 그래핀을 생성하기 위해, 산화 그래핀을 가정용 레이저 조각기를 사용하여 환원하였다. 제작된 그래핀의 비정전용량을 향상시키기 위하여, 원자층 단위 증착법을 이용하여 의사커패시터 거동을 나타내는 VOx를 균일하게 증착하였다. 이는 XPS 분석을 통해 VOx/그래핀 복합체에서 다양한 상의 VOx를 관찰하였다. VOx/그래핀 복합체는 VOx가 없는 그래핀(~50 F/g)과 비교할 때 상당히 향상된 비정전용량(~189 F/g)을 보였다. 본 연구에서 소개한 에너지 저장 장치에 사용되는 그래핀 기반 전극의 제작 방법은 여러가지 제작 방법의 대안책 중 하나로 사용될 것으로 기대된다.
Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.
[References]
  1. Lukatskaya MR, Dunn B, Gogotsi Y, Nat. Commun., 7, 12647, 2016
  2. Nunez CG, Manjakkal L, Dahiya R, Npj Flexible Electron., 3, 1, 2019
  3. Miller JR, Simon P, Science, 321(5889), 651, 2008
  4. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845, 2008
  5. Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483, 2000
  6. Yang P, Mai W, Nano Energy, 8, 274, 2014
  7. Ko JM, Kim KM, Korean Chem. Eng. Res., 47(1), 11, 2009
  8. Tagsin P, Klangtakai P, Harnchana V, Amornkitbamrung V, Pimanpang S, Kumnorkaew P, J. Korean Phys. Soc., 71(12), 997, 2017
  9. Wang NN, Zhang YF, Hu T, Zhao YF, Meng CG, Curr. Appl. Phys., 15(4), 493, 2015
  10. Perera SD, Patel B, Nijem N, Roodenko K, Seitz O, Ferraris JP, Chabal YJ, Balkus KJ, Adv. Eng. Mater., 1(5), 936, 2011
  11. Zhang YM, Bao SX, Liu T, Chen TJ, Huang J, Hydrometallurgy, 109(1-2), 116, 2011
  12. Li M, Sun G, Yin P, Ruan C, Ai K, ACS Appl. Mater. Interfaces, 5(21), 11462, 2013
  13. Boukhalfa S, Evanoff K, Yushin G, Energy Environ. Sci., 5, 6872, 2012
  14. Lee HS, Park JW, Lee YM, Ryou MH, Kim KM, Ko JM, Korean Chem. Eng. Res., 54(3), 293, 2016
  15. El-Kady MF, Ihns M, Li M, Hwang JY, Mousavi MF, Chaney L, Lech AT, Kaner RB, Proc. Natl. Acad. Sci. U.S.A., 112(14), 4223, 2015
  16. Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597, 2014
  17. Huang XW, Xie ZW, He XQ, Sun HZ, Tong C, Xie DX, Synth. Met., 135-136, 235, 2003
  18. Tung VC, Allen MJ, Yang Y, Kaner RB, Nat. Nanotechnol., 4(1), 25, 2009
  19. Becerill HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, ACS Nano, 2(3), 463, 2008
  20. Wang X, Zhi L, Mullen K, Nano Lett., 8(1), 323, 2008
  21. Matuyama E, J. Phys. Chem., 58(3), 215, 1954
  22. Furst A, Berlo RC, Hooton S, Chem. Rev., 65(1), 51, 1965
  23. Si Y, Samulski ET, Nano Lett., 8, 1679, 2008
  24. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J, J. Phys. Chem. C
  25. Kang KY, Choi MG, Lee YG, Kim KM, Korean Chem. Eng. Res., 49(5), 541, 2011
  26. Kim DH, Song KC, Shim KH, Kim JH, Korean Chem. Eng. Res., 41(2), 238, 2003
  27. George SM, Chem. Rev., 110(1), 111, 2010
  28. Lee SM, Park YJ, Kim JH, ACS Appl. Nano Mater, 2(6), 3711, 2019
  29. Bhattacharjya D, Kim CH, Kim JH, You IK, In JB, Lee SM, Appl. Surf. Sci., 462, 353, 2018
  30. Tran TX, Choi H, Che CH, Sul JH, Kim IG, Lee SM, Kim JH, In JB, ACS Appl. Mater. Interfaces, 10(46), 3977, 2018
  31. Johra FT, Lee JW, Jung WG, J. Ind. Eng. Chem., 20(5), 2883, 2014
  32. Wu N, She X, Yang D, Wu X, Su F, Chen Y, J. Mater. Chem., 22(33), 17254, 2012
  33. Lee HY, Goodenough JB, J. Solid State Chem., 148, 81, 1999
  34. Mattelaer F, Geryl K, Rampelberg G, Dendooven J, Detavernier C, ACS Appl. Mater. Interfaces, 9, 13121, 2017
  35. Uchaker E, Zheng YZ, Li S, Candelaria SL, Hu S, Cao GZ, J. Mater. Chem. A, 2(43), 18208, 2014
  36. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797, 2012
  37. Wang W, Jiang B, Hu LW, Lin ZS, Hou JG, Jiao SQ, J. Power Sources, 250, 181, 2014
  38. Zhu K, Zhang C, Guo S, Yu H, Liao K, Chen G, Wei Y, Zhou H, ChemElectroChem, 2(11), 1660, 2015
  39. Sun W, Zheng RL, Chen XY, J. Power Sources, 195(20), 7120, 2010
  40. Cui L, Li J, Zhang XG, J. Appl. Electrochem., 39(10), 1871, 2009
  41. Conway BE, Kluwer Academic/Plenum Publisher, New York (1999).
  42. Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York (2000).
  43. Sun X, Xie M, Travis JJ, Wang G, Sun H, Lian J, George SM, J. Phys. Chem. C, 117, 22497, 2013
  44. Zang X, Shen C, Kao E, Warren R, Zhang R, Teh KS, et al., Adv. Mater., 30, 170475, 2017
  45. Lu T, Zhang YP, Li HB, Pan LK, Li YL, Sun Z, Electrochim. Acta, 55(13), 4170, 2010
  46. Vinoth V, Wu JJ, Asiri AM, Lana-Villarreal T, Bonete P, Anandan S, Ultrason. Sonochem., 29, 205, 2016
  47. Sassin MB, Mansour AN, Pettigrew KA, Rolison DR, Long JW, ACS Nano, 4, 4505, 2010