Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.58, No.1, 122-126, 2020
폴리디메틸실록산 기반 마이크로패턴 채널 시스템을 이용한 단일 세포의 극성 신호에 관한 연구
A Study on Single Cell Polarized Signals Using Polydimethylsiloxane-based Micropatterned Channel System
본 연구에서는 폴리디메틸실록산(PDMS)과 모세관-미세몰딩(MIMIC) 기술을 활용하여 마이크로패턴 채널 시스템을 제작하고, 단일 세포 수준에서 극성화 패턴으로 형성되는 분자 신호를 고해상도 세포 이미징을 통해 분석하였다. 이 과정에서 혈소판유래성장인자(PDGF)가 처리된 세포에서는 세포 이동에 중요한 세 종류의 신호인 포스포이노시티드 3-인산화효소(PI3K), Rac 및 액틴(Actin) 신호가 선두(front)영역에서 후미(rear)영역에 비해 강하게 활성화 하는 데 반해, 마이오신 경쇄(MLC) 신호는 비특이적 경향성을 보여주었다. 본 연구 결과는 향후 마이크로패턴의 미세환경에서 세포 극성화 신호와 세포 이동과의 상관 관계를 연구하는 데 중요한 도움이 될 것으로 사료된다.
In this study, we produced the micropatterned channel system using polydimethylsiloxane (PDMS) and micromolding in capillaries (MIMIC) technology and evaluated cellular polarity signals through high-resolved imaging at the single-cell level. In cells treated with platelet-derived growth factor (PDGF), three types of key signals in cell migration; phosphoinositide 3-kinase (PI3 K), Rac, and Actin, were strongly activated in the front area compared to the rear region, whereas myosin light chain (MLC) showed no notable activity in the front and rear areas. Our results will, therefore, provide important information and methodology for studying the correlation between cell polarity signals and cell migration under the newly defined microenvironment.
[References]
  1. Lutolf MP, Hubbell JA, Nat. Biotechnol., 23(1), 47, 2005
  2. Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA, Adv. Healthc. Mater., 2(1), 57, 2013
  3. Liu WF, Chen CS, Materials Today, 8(12), 28, 2005
  4. Shoichet MS, Macromolecules, 43, 581, 2009
  5. Little L, Healy KE, Schaffer D, Chem. Rev., 108(5), 1787, 2008
  6. Stroka KM, Gu Z, Sun SX, Konstantopoulos K, Current Opinion in Cell Biology, 30, 41-50(2014).
  7. McLennan R, Dyson L, Prather KW, Morrison JA, Baker RE, Maini PK, Kulesa PM, Development, 139(16), 2935, 2012
  8. Polacheck WJ, Zervantonakis IK, Kamm RD, Cellular and Molecular Life Sciences, 70(8), 1335-1356(2013).
  9. Clark AG, Vignjevic DM, Current Opinion in Cell Biology, 36, 13-22(2015).
  10. Qin D, Xia Y, Whitesides GM, Nature Protocols, 5(3), 491, 2010
  11. Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B, Biophysical J., 97(1), 357, 2009
  12. Kim DH, Provenzano PP, Smith CL, Levchenko A, J. Cell Biol., 197(3), 351, 2012
  13. Vozzi G, Flaim C, Ahluwalia A, Bhatia S, Biomaterials, 24(14), 2533, 2013
  14. Kamei KI, Mashimo Y, Koyama Y, Fockenberg C, Nakashima M, Nakajima M, Chen Y, Biomedical Microdevices, 17, 36, 2015
  15. Dewez JL, Lhoest JB, Detrait E, Berger V, Dupont-Gillain C, Vincent LM, Rouxhet PG, Biomaterials, 19(16), 1441, 1998
  16. Veevers-Lowe J, Ball SG, Shuttleworth A, Kielty CM, J. Cell. Sci., 124(8), 1288, 2011
  17. Tallquist M, Kazlauskas A, Cytokine & Growth Factor Reviews, 15(4), 205-213(2014).
  18. Pertz O, Hodgson L, Klemke RL, Hahn KM, Nature, 440(7087), 1069, 2006
  19. Duchek P, Somogyi K, Jekely G, Beccari S, Rørth P, Cell, 107(1), 17, 2001
  20. Yamaguchi H, Condeelis J, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(5), 642-652(2007).
  21. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM, Annual Review of Cell and Developmental Biology, 26, 315-333(2010).
  22. Plotnikov SV, Pasapera AM, Sabass B, Waterman CM, Cell, 151(7), 1513, 2012
  23. Ridley AJ, J. Cell Sci., 114(15), 2713, 2001