Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.58, No.1, 69-83, 2020
메탄올을 이용한 올레핀 생산 분리공정의 기술 및 경제성 분석
Techno-Economic Analysis of Methanol to Olefins Separation Processes
경질 올레핀은 중요한 석유화학제품일 뿐 아니라 다양한 화학 중간체들을 위한 기본 구성체이다. 최근 에틸렌이 생산 제품의 대부분을 차지하는 Ethane Cracking Center (ECC) 공정이 크게 늘어남에 따라 프로필렌 공급이 매년 꾸준히 증가하는 프로필렌 수요를 따라잡지 못하고 있다. 이에 따라 프로필렌의 수요를 따라잡기 위하여 메탄올로부터 올레핀으로 전환하는 기술이 보다 중요하게 되었다. Methanol to olefins (MTO) 공정은 합성가스를 통해 메탄올을 생산하고 메탄올로부터 프로필렌 등 올레핀을 생산한다. 메탄올을 올레핀으로 전환하는 반응은 사용되는 촉매에 따라 다른 반응생성물 조성을 갖기 때문에 생성물에 따른 적절한 분리 방법이 고려되어야 한다. 따라서 네 가지의 대표적인 반응 생성물 조성들에 대하여 네 가지의 분리공정 대안들을 Aspen plus를 이용하여 모사하였다. 또한 모사 결과를 바탕으로 기술적 경제적 분석을 통하여 MTO 공정의 반응 생성물 조성에 대한 각 분리공정의 성능을 평가하였으며, 이를 통해 MTO 공정의 반응기에서 생산되는 생성물 조성에 따라 적합한 분리공정 선정을 위한 지침을 제시하였다.
Light olefins are important petrochemicals as well as primary building blocks for various chemical intermediates. As the number of ethane cracking center (ECC) process, in which ethylene accounts for most of the production, has increased in recent years, propylene supply is not catching up with steadily increasing propylene demand. This trend makes the conversion of methanol to olefins to get more industrial importance. The methanol to olefins (MTO) process produces methanol through syngas and obtain olefins such as propylene through methanol. Since the reaction from methanol to olefins provides different product compositions depending on the catalyst used for the reaction, it is important to choose an appropriate separation process for the reaction product with different composition. Four different separation processes are considered for four representative cases of product compositions. The separation processes for the reaction products are evaluated by techno-economic analysis based on the simulation results using Aspen plus. Guidelines are provided for selecting a suitable separation process for each of representative case of product compositions in the MTO process.
[References]
  1. Fernelius CW, Wittcoff H, Varnerin RE, J. Chem. Educ., 56(6), 385, 1979
  2. Maddah HA, American Journal of Polymer Science, 6(1), 1-11(2016).
  3. Aitani AM, Oil Gas European Magazine, 30(1), 36, 2004
  4. Tian P Wei Y, Ye M, Liu Z, Acs Catalysis, 5(3), 1922, 2015
  5. Johhansson E, Chalmers University of Technology, Gothenburg, Sweden (2013).
  6. Stocker M, Microporous and Mesoporous Materials, 29(1-2), 3-48(1999).
  7. Safarik DJ, Eldridge RB, Ind. Eng. Chem. Res., 37(7), 2571, 1998
  8. Zimmerman H, Walzl R, “Ethylene”, Ullmann’s Encyclopedia of Industrial Chemistry(2009).
  9. Orga AC, Anusi MO, Obibuenyi JI, Njoku CN, Chemical and Process Engineering Research, 42, 2225-0913(2016).
  10. Reine TA, Eldridge RB, Ind. Eng. Chem. Res., 44(19), 7505, 2005
  11. Edwards JE, “Process Modelling Selection of Thermodynamic Methods,” ChemCAD Seminar, May, Thornaby(2000).
  12. Chae HJ, Song YH, Jeong KE, Kim CU, Jeong SY, J. Phys. Chem. Solids, 71(4), 600, 2010
  13. Vu DV, Journal of the Japan Petroleum Institute, 53(4), 232-238(2010).
  14. Hadi N, Niaei A, Nabavi SR, Farzi A, Navaei Shirazi M, Chemical and Biochemical Engineering Quarterly, 28(1), 53-63(2014).
  15. Park J, Kim K, Shin JW, Tak K, Park YK, The Canadian Journal of Chemical Engineering, 95(12), 2390-2397(2017).
  16. Peters MS, Timmerhaus KD, West RE, Timmerhaus K, West R, Plant design and economics for chemical engineers, 3rd ed., McGraw-Hill, New York, (1968).