Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.58, No.1, 52-58, 2020
LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과
Effect of MgF2 Surface Modification for LiNi0.8Co0.15Al0.05O2 Cathode Material on Improving Electrochemical Characteristics
본 연구에서는 MgF2를 이용하여 LiNi0.8Co0.15Al0.05O2 양극활물질의 표면을 코팅하여 전기화학적 특성과 열적 안정성을 평가하였다. 코팅된 MgF2의 비율은 0.5, 1, 3 wt%로 조절하였다. 전기화학적 특성은 CV, 충·방전 프로파일, 출력특성, 수명특성을 분석하였고, 열적 안정성은 DSC 분석을 통하여 이루어졌다. 전기화학적 특성 분석 결과 0.1C에서 초기 방전 용량은 MgF2 코팅이 되었을 때 감소하였지만, 2C까지 출력을 향상 시켰을 때는 약간 향상된 방전 용량을 얻을 수 있었고, 수명특성 또한 향상되었다. 또한 DSC 분석 결과 코팅이 되었을 때 발열 온도가 증가하였고, 발열 피크의 세기 또한 감소하였다.
Electrochemical characterization and thermal stability were investigated for MgF2 coated LiNi0.8Co0.15Al0.05O2 cathode. The ratio of MgF2 was controlled by 0.5, 1, 3 wt%. Cyclic voltammetry, charge-discharge profiles, rate capability, cycle life were measured for electrochemical properties. DSC analysis was measured for thermal stability. The first discharge capacities of MgF2 coated LiNi0.8Co0.15Al0.05O2 were decreased at 0.1C-rate compared to pristine LiNi0.8Co0.15Al0.05O2. But the rate capability and cycle life of MgF2 coated LiNi0.8Co0.15Al0.05O2 were improved at 2C-rate. In DSC analysis result, the exothermic temperature of MgF2 coated LiNi0.8Co0.15Al0.05O2 was increased and peak height was decreased.
[References]
  1. Zhang QQ, Liu K, Ding F, Li W, Liu XJ, Zhang JL, Electrochim. Acta, 298, 818, 2019
  2. Liang HM, Wang ZX, Guo HJ, Wang JX, Leng J, Appl. Surf. Sci., 423, 1045, 2017
  3. Park HR, J. Ind. Eng. Chem., 16(5), 698, 2010
  4. Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19(5), 791, 2002
  5. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ, Electrocim. Acta, 51, 3872, 2006
  6. Hu GR, Liu WM, Peng ZD, Du K, Cao YB, J. Power Sources, 198, 258, 2012
  7. Zhong SW, Zhao YJ, Lian F, Li Y, Hu Y, Li PZ, Mei J, Liu QG, Trans. Nonferrous Met. Soc. China, 16, 137, 2006
  8. Xin-Rong D, Guo-Rong H, Ke D, Zhong-Dong P, Xu-Guang G, Ya-Nan Y, Mater. Chem. Phys., 109(2-3), 469, 2008
  9. Wu SH, Yang CW, J. Power Sources, 146(1-2), 270, 2005
  10. Zhang LQ, Noguchi H, Li DC, Muta T, Wang XQ, Yoshio M, Taniguchi I, J. Power Sources, 185(1), 534, 2008
  11. Kim HU, Song JH, Mumm DR, Song MY, Ceram. Int., 37, 779, 2011
  12. Song MY, Kwon IH, Shim SB, Song JH, Ceram. Int., 36, 1225, 2010
  13. Cui P, Jia ZJ, Li LY, He T, J. Phys. Chem. Solids, 72, 899, 2011
  14. Muto S, Tatsumi K, Kojima Y, Oka H, Kondo H, Horibuchi K, Ukyo Y, J. Power Sources, 205, 449, 2012
  15. Zhang LQ, Noguchi H, Yoshio M, J. Power Sources, 110(1), 57, 2002
  16. Cho Y, Cho J, J. Electrochem. Soc., 157(6), A625, 2010
  17. Chung YM, Ryu KS, Bull. Korean Chem. Soc., 30(8), 1733, 2009
  18. Chung YM, Ryu SH, Ju JH, Bak YR, Hwang MJ, Kim KW, Cho KK, Ryu KS, Bull. Korean Chem. Soc., 31(8), 2304, 2010
  19. Ryu JH, Kim SB, Park YJ, Bull. Korean Chem. Soc., 30(3), 657, 2009
  20. Park BC, Kim HB, Bang HJ, Prakash J, Sun YK, Ind. Eng. Chem. Res., 47(11), 3876, 2008
  21. Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R, J. Power Sources, 188(2), 564, 2009
  22. Wang YP, Wang XY, Yang S, Shu HB, Wei Q, Wu Q, Bai Y, Hu B, J. Solid State Electr., 16, 2913, 2012
  23. Wang FY, Zhu YF, Jiang Y, Zhang EP, J. Sol-Gel Sci. Technol., 58, 587, 2011
  24. Fujihara S, Tada M, Kimura T, Thin Solid Films, 304(1-2), 252, 1997
  25. Majumder SB, Nieto S, Katiyar RS, J. Power Sources, 154(1), 262, 2006