Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 891-897, 2019
기상 포름알데히드 반응을 위한 활성탄에 담지한 P-V-Mo 촉매의 조성에 따른 영향
Effects of Composition in P-V-Mo Catalysts Supported on Activated Carbon for Vapor Formaldehyde Reaction
본 연구에서는 Phosphoric acid (H3PO4)와 Vanadium (V) pentoxide (V2O5), Molybdenum (VI) trioxide (MoO3)으로 부터 조성을 달리하여, heteropoly acid의 PVMo 촉매를 활성탄 지지체에 담지하였다. 촉매의 반응성 조사를 위해, 기상의 포름알데히드를 140 °C 의 온도에서 1시간 동안 반응시켰다. 반응전후의 촉매는 XRD와 BET 분석을 수행하였으며, 촉매의 산도 측정을 위해 NH3-TPD을 수행하였다. 포름알데히드의 전환율은 MoO3와 H3PO4 성분이 감소하고 V2O5 성분이 증가함에 따라 증가하였다. 대부분의 촉매에서 비교적 낮은 촉매 결정성이 관찰되었으며, 비표면적은 반응후 다소 감소하는 것으로 나타났다. NH3-TPD 분석 결과, 400 °C~500 °C 에 해당하는 강한 산점의 비율이 MoO3와 H3PO4 성분의 함량이 감소하고 V2O5 성분의 함량이 증가함에 따라 증가하였다. 이러한 강한 산점의 비율이 포름알데히드의 전환율에 영향을 미치는 것으로 나타났다.
In this study, heteropoly acid PVMo catalysts were supported on activated carbon with various composition of phosphoric acid (H3PO4), vanadium (V) pentoxide (V2O5) and molybdenum (VI) trioxide (MoO3). Catalytic performance was examined at 140 °C for 1hour in vapor formaldehyde. XRD and BET analyses were carried with the catalysts before and after the reaction. Formaldehyde conversion was increased with decreasing Mo and H3PO4 content and increasing V2O5 content. Acidity of the catalysts was investigated with NH3-TPD. Crystallinity of the catalysts was relatively low, and surface area was decreased after the reaction. In NH3-TPD result, the ratio of strong acid site corresponding to NH3 desorption between 400 °C and 500 °C was increased by decreasing MoO3 and H3PO4 content and increasing V2O5 content. Therefore, it was found that the strong acid site could affect the catalytic reactivity in vapor formaldehyde conversion.
[References]
  1. Emig G, Kern F, Ruf S, Warnecke HJ, Appl. Catal. A: Gen., 118(1), L17, 1994
  2. Kern F, Ruf S, Emig G, Appl. Catal. A: Gen., 150(1), 143, 1997
  3. Nakao H, Yutaka K, Arata C, Patent No. 6,332, 913 B2(2018).
  4. Boudjema S, Vispe E, Choukchou-Braham A, Mayoral JA, Bachira R, Fraileb JM, RSC Adv., 5, 6853, 2015
  5. Sopa A, Waclaw-Held A, Grossy M, Pijanka J, Nowinska K, Appl. Catal. A: Gen., 285(1-2), 119, 2005
  6. Sawant DP, Vinu A, Justus J, Srinivasu P, Halligudi SB, J. Mol. Catal. A-Chem., 276(1-2), 150, 2007
  7. Chimienti ME, Pizzio LR, Caceres CV, Blanco MN, Appl. Catal. A: Gen., 208(1-2), 7, 2001
  8. Sharma P, Patel A, Appl. Surf. Sci., 255(17), 7635, 2009
  9. Ressler T, Dorn U, Walter A, Schwarz S, Hahn AHP, J. Catal., 275(1), 1, 2010
  10. Rafiee E, Shahbazi F, Joshaghani M, Tork F, J. Mol. Catal. A-Chem., 242(1-2), 129, 2005
  11. Kokorin AI, Kulak AI, Tomskii IS, Rufov Y, Russ. J. Phys. Chem., 7, 255, 2013
  12. Kalantar-Zadeh K, Wlodarski W, Tang J, Wang M, Wang KL, Shailos A, Galatsis K, Kaner RB, Kojima R, Strong V, Lech A, RSC., 2, 429, 2010
  13. Salavati H, Rasouli N, Mater. Res. Bull., 46(11), 1853, 2011
  14. Wu XL, Xiao M, Meng YZ, Lu YX, J. Mol. Catal. A-Chem., 238(1-2), 158, 2005
  15. Bezerra FA, Altino HON, Soares RR, J. Braz. Chem. Soc., 30, 1025, 2019
  16. Suppiah D, Komar A, Hamid S, J. Therm. Anal. Calorim., 129, 1367, 2017
  17. Chary KVR, Bhaskar T, Kishan G, Reddy KR, J. Phys. Chem. B, 105(19), 4392, 2001
  18. Zhao H, Zuo CC, Yang D, Li CS, Zhang SJ, Ind. Eng. Chem. Res., 55(50), 12693, 2016
  19. Yin XL, Han HM, Gunji I, Endou A, Ammal SSC, Kubo M, Miyamoto A, J. Phys. Chem. B, 103(22), 4701, 1999
  20. Kim SY, Jermy BR, Bineesh KV, Lim DO, Kim KH, Park DW, Korean Chem. Eng. Res., 47(3), 275, 2009
  21. Mitran G, Neatu F, Pavel OD, Trandafir MM, Florea M, Materials, 12, 748, 2019
  22. Yu X, Bao Q, Wang Z, Zhang Y, Liu B, Ma H, Wang Y, Chem. Res. Chin. Univ., 34, 485, 2018