Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.6, 874-882, 2019
미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구
Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier
본 연구에서는, Lab-scale 기포 유동층 가스화기(직경 : 0.11 m, 높이 : 0.42 m)에서 미이용 산림 바이오매스 4종과 폐목재 1종의 가스화 특성을 살펴보았다. 실험은 온도와 연료 주입량을 각각 800 oC, 1 kg/h로 고정하고, ER 0.15-0.3, 가스 유속 2.5-5 U0 /Umf으로 변화시키면서 진행했다. 층 물질로는 silica sand와 olivine을 사용하였다. 생성 가스의 조성은 NDIR 분석기와 GC를 통해 분석하였으며, 분석 결과 평균적으로 H2 3~4 vol%, CO 15~16 vol%, CH4 4 vol%, CO2 18~19 vol.%으로 미이용 산림바이오매스와 폐목재 모두 비슷한 조성을 보였으며, 생성 가스의 평균 저위발열량은 1193~1301 kcal/Nm3을, 고위발열량은 1262~1377 kcal/Nm3을 나타내었다. 또한, 타르 저감 효과를 알아보고자 층 물질로 olivine을 사용 시 silica sand에 비해 생성 가스 내 C2 이상 성분이 대부분 감소하였고, H2 함량이 증가하여 타르의 cracking 반응이 생겼음을 확인하였다. 비응축성 타르는 72% (1.24 → 0.35 g/Nm3), 응축성 타르는 27% (4.4 → 3.2 g/Nm3)가량 감소하는 효과를 확인하였다.
In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of 2.5-5 U0/Umf are determined at the constant temperature of 800 °C and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of 287 μm and olivine with an average particle size of 500 μm were used as the bed material, respectively. The average product gas composition of samples is as follows; H2 3-4 vol.%, CO 15-16 vol.%, CH4 4 vol.% and CO2 18-19 vol.% with a lower heating value (LHV) of 1193-1301 kcal/ Nm3 and higher heating value (HHV) of 1262-1377 kcal/Nm3. In addition, it was found that olivine reduced most of C2 components and increased H2 content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% (1.24 → 0.35 g/Nm3) and the condensable tar decreases by 27% (4.4 → 3.2 g/Nm3).
[References]
  1. Demirbas A, Arin G, Energy Sources, 24(5), 471, 2002
  2. LeValley TL, Richard AR, Fan MH, Int. J. Hydrog. Energy, 39(30), 16983, 2014
  3. De Filippis P, Borgianni C, Paolucci M, Pochetti F, Biomass Bioenerg., 27(3), 247, 2004
  4. Ahmed II, Gupta AK, Appl Energy, 91, 75, 2012
  5. International Energy Agency (IEA), “Technology Roadmap: Delivering Sustainable Bioenergy,” Paris(2017).
  6. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S, Renew. Sust. Energ. Rev., 15, 2262, 2011
  7. Heidenreich S, Foscolo PU, Prog. Energy Combust. Sci., 46, 72, 2015
  8. http://www.forest.go.kr/kfsweb/kfs/idx/Index.do.
  9. http://www.law.go.kr/admRulInfoP.do?admRulSeq=2100000110450.
  10. Dincer I, Int. J. Hydrog. Energy, 37(2), 1954, 2012
  11. Das D, Veziroglu TN, Int. J. Hydrog. Energy, 26(1), 13, 2001
  12. Kalinci Y, Hepbasli A, Dincer I, Int. J. Hydrog. Energy, 34, 8799, 2007
  13. Sheth PN, Babu BV, Bioresour. Technol., 100(12), 3127, 2009
  14. Foust TD, Aden A, Dutta A, Phillips S, Cellulose, 16, 547, 2009
  15. Anukam A, Mamphweli S, Reddy P, Meyer E, Okoh O, Renew. Sust. Energ. Rev., 66, 775, 2016
  16. Brown RC, Chichester, UK, Wiley, 47-77(2011).
  17. Warnecke R, Biomass Bioenerg., 18(6), 489, 2000
  18. Rao TR, Bheemarasetti JVR, Energy, 26(6), 633, 2001
  19. Milne TA, Evans RJ, Abatzoglou N, National Renewable Energy Laboratory Report, NREL/TP-570-23357 (1998).
  20. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355, 2011
  21. Li C, Suzuki K, Renew. Sust. Energ. Rev., 13, 594, 2009
  22. Yung MM, Magrini-Bair KA, Parent YO, Carpenter DL, Feik CJ, Gaston KR, Pomeroy MD, Phillips SD, Catal. Lett., 134(3-4), 242, 2010
  23. Magrini-Bair KA, Czernik S, French R, Parent YO, Chornet E, Dayton DC, Feik C, Bain R, Appl. Catal. A: Gen., 318, 199, 2007
  24. Rapagna S, Jand N, Kiennemann A, Foscolo PU, Biomass Bioenerg., 19(3), 187, 2000
  25. An SH, Park JY, Tae JG, Rhee YW, Korean Chem. Eng. Res., 55(1), 99, 2017
  26. Bak YC, Choi JH, Korean Chem. Eng. Res., 56(5), 725, 2018
  27. Yun YS, Chung SW, Lee SJ, Korean Chem. Eng. Res., 57(4), 461, 2019
  28. Benedikt F, Fuchs J, Schmid JC, Muller S, Hofbauer H, Korean J. Chem. Eng., 34(9), 2548, 2017
  29. Yoo HM, Lee JS, Yang WS, Choi HS, Jang HN, Seo YC, Korean J. Chem. Eng., 35(3), 654, 2018
  30. Yun Ym, Seo MW, Ra HW, Yoon SJ, Mun TY, Moon JH, Kook JW, Kim YK, Lee JG, Kim JH, Korean J. Chem. Eng., 34(10), 2756, 2017
  31. Neeft JPA, “Rationale for Setup of Impinger Train,” CEN BT/TF 143(2005).
  32. Mun TY, Ph.D. Dissertation, University of Seoul, Republic of Korea, Seoul(2013).
  33. Jo WJ, Jeong SH, Park SJ, Choi YT, Lee DH, The Korean J. Chem. Eng., 53, 783-791(2015).
  34. Kim YD, Yang CW, Kim BJ, Kim KS, Lee JW, Moon JH, Yang W, Yu TU, Do Lee U, Appl. Energy, 112, 414, 2013
  35. Kitzler H, Pfeifer C, Hofbauer H, Fuel Process. Technol., 92(5), 908, 2011
  36. Kook JW, Choi HM, Kim BH, Ra HW, Yoon SJ, Mun TY, Kim JH, Kim YK, Lee JG, Seo MW, Fuel, 181, 942, 2016
  37. Subramanian P, Sampathrajan A, Venkatachalam P, Bioresour. Technol., 102(2), 1914, 2011
  38. Narvaez I, Orio A, Aznar MP, Corella J, Ind. Eng. Chem. Res., 35(7), 2110, 1996
  39. Sun S, Zhao Y, Su F, Ling F, Korean J. Chem. Eng., 26(2), 528, 2009
  40. Makwana JP, Joshi AK, Athawale G, Singh D, Mohanty P, Bioresour. Technol., 178, 45, 2015
  41. Sanz A, Nieva D, Dufour J, Int. J. Hydrog. Energy, 40(15), 5074, 2015
  42. Larsson A, Israelsson M, Lind F, Seemann M, Thunman H, Energy Fuels, 28(4), 2632, 2014