Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.5, 735-742, 2019
파상형 이온 선택 표면상의 전기와류 불안정성
Electroconvective Instability on Undulated Ion-selective Surface
이온 선택성 표면이 가지는 파상구조와 전기와류 불안정성 간의 전기동역학적 상호작용을 수치해석을 통하여 연구하였다. 유한요소법을 이용하여 전기장-이온 이동현상-유동장을 완전결합 해석을 하였다. 이를 통해 파상구조가 제공하는 전기와류 생성 기작인 Dukhin’s mode의 유효성 및 역할을 제시하였다. Runinstein’s mode와 경쟁관계에 놓이는 Dukhin’s mode는 (i) 과한계 영역으로의 전이 전압을 낮춰주고 (ii) 혼돈계인 과한계 영역에서 전류를 비선형적으로 증가시켜준다. 또한, (iii) 전기와류 불안정성에서 발생하는 비효율적 혼합의 원인인 고주파수 Fourier 성분을 배제하여 전기와류의 혼합 효율을 상승시켜 준다. 결론적으로, 본 연구에서 제시한 기작은 전기투석, 화학전지 등의 이온 선택성이동현상 시스템에 대한 에너지 효율적인 기작으로 활용 가능할 것이다.
In this work, the electrokinetic interactions between the undulated structure of an ion-selective membrane and electroconvective instability has been studied using numerical analysis. Using finite element method, electric fieldionic species transport-flow field were analyzed by fully-coupled manner. Through the numerical study, the Dukhin’s mode as the mechanism of undulated surface for the electroconvective instability were proven. The Dukhin’s mode which competes with Rubinstein’s mode has roles of (i) decreasing transition voltage to overlimiting regime and (ii) non-linearly increasing of overlimiting current. Also, (iii) the mixing efficiency is enhanced by removal mechanism of high-frequency Fourier mode of the electroconvective instability. Conclusively, the undulated ion-selective surface would provide energyefficient mechanism for ion-selective transport systems such as electrodialysis, electrochemical battery, etc.
[References]
  1. Schoch RB, Han J, Renaud P, Rev. Mod. Phys., 80(3), 839, 2008
  2. Probstein RF, Physicochemical Hydrodynamics: An Introduction. 2nd ed., Wiley, Hoboken, NJ(2005).
  3. Rubinstein I, Zaltzman B, Phys. Rev. E, 62(2), 2238, 2000
  4. Rubinstein I, Zaltzman B, Math. Models Methods Appl. Sci., 11(2), 263, 2001
  5. Rubinstein I, Zaltzman B, Adv. Colloid Interface Sci., 159(2), 117, 2010
  6. Kim SJ, Wang YC, Lee JH, Jang H, Han J, Phys. Rev. Lett., 99(4), 044501, 2007
  7. Rubinstein SM, Manukyan G, Staicu A, Rubinstein I, Zaltzman B, Lammertink RGH, Mugele F, Wessling M, Phys. Rev. Lett., 101(23), 236101, 2008
  8. Cho I, Kim W, Kim J, Kim HY, Lee H, Kim SJ, Phys. Rev. Lett., 116(25), 254501, 2016
  9. Kwak R, Pham VS, Lim KM, Han J, Phys. Rev. Lett., 110, 114501, 2013
  10. Dydek EV, Zaltzman B, Rubinstein I, Deng DS, Mani A, Bazant MZ, Phys. Rev. Lett., 107(11), 118301, 2011
  11. Pham VS, Li Z, Lim KM, White JK, Han J, Phys. Rev. E, 86(4), 046310, 2012
  12. Druzgalski CL, Andersen MB, Mani A, Phys. Fluids, 25(11), 110804, 2013
  13. Demekhin EA, Nikitin NV, Shelistov VS, Phys. Fluids, 25(12), 122001, 2013
  14. Davidson SM, Andersen MB, Mani A, Phys. Rev. Lett., 112(12), 128302, 2014
  15. Mareev SA, Butylskii DY, Pismenskaya ND, Larchet C, Dammak L, Nikonenko VV, J. Membr. Sci., 563, 768, 2018
  16. Pundik T, Rubinstein I, Zaltzman B, Phys. Rev. E, 72(6), 061502, 2005
  17. Chang HC, Demekhin EA, Shelistov VS, Phys. Rev. E, 86(4), 046319, 2012
  18. de Valenca J, Jogi M, Wagterveld RM, Karatay E, Wood JA, Lammertink RGH, Langmuir, 34(7), 2455, 2018
  19. Rubinstein I, Zaltzman B, Phys. Rev. Lett., 114(11), 114502, 2015
  20. Druzgalski C, Mani A, Phys. Rev. Fluids, 1(7), 073601, 2016
  21. Karatay E, Druzgalski CL, Mani A, J. Colloid Interface Sci., 446, 67, 2015
  22. Davidson SM, Wessling M, Mani A, Sci. Rep., 6, 22505, 2016
  23. Rubinstein I, Shtilman L, J. Chem. Soc.-Faraday Trans., 75, 231, 1979
  24. Abu-Rjal R, Prigozhin L, Rubinstein I, Zaltzman B, Russ. J. Eleectrochem., 53(9), 903, 2017
  25. Kim SJ, Song YA, Han J, Chem. Sov. Rev., 39(3), 912, 2010
  26. Masliyah JH, Bhattacharjee S, Electrokinetic and Colloid Transport Phenomena. Wiley, Hoboken, NJ(2006).