Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.5, 666-671, 2019
연속식 결정화기에서 온도와 교반속도에 의한 탄산칼슘 결정의 형상변화
Phase Changes of Calcium Carbonate by Temperature and RPM in Continuous Crystallizer
탄산칼슘은 칼사이트, 바테라이트, 아라고나이트 3개의 상이 있다. 칼사이트와 아라고나이트는 열역학적으로는 바테라이트 보다 안정하다. 연속식결정화기에서 탄산나트륨과 염화칼슘 용액반응으로 아라고나이트 결정 제조공정에서 온도와 혼합속도 영향에 대하여 연구하였다. 회분식결정화기에서 칼사이트는 상대적으로 낮은 온도(40 °C 아래)에서 생성되지만, 아라고나이트는 높은 온도에서 발견된다. 혼합속도가 100 rpm인 연속식결정화기에서, 아라고나이트는 어떤 반응온도에서도 발견할 수 없었다. 그러나 혼합속도가 300 rpm, 500 rpm으로 증가하면, 칼사이트와 아라고나이트의 비는 온도가 증가하면서 증가하였다.
Calcium carbonate involves three phases such as calcite, vaterite, and aragonite. Calcite and aragonite were more thermodynamically stable than vaterite. The synthesis of aragonite crystals by the reaction with sodium carbonate and calcium chloride solutions was investigated focusing on the effect of temperature and rpm in continuous crystallizer. In the batch crystallization test, calcite was synthesized by a relatively low temperature (under 40 °C), but aragonite was formed at high temperature. In the continuous process with 100 rpm, no aragonite was found regardless of reaction temperature. But as increasing the stirring rate to 300 rpm and 500 rpm, the ratio of aragonite to calcite increased as increasing the temperature.
[References]
  1. Kang DH, “Powder Technology,” 2nd ed. Heejungdang, Seoul, (1995).
  2. Kang DH, Rhue PJ, Park JY, Choi HG, “Powder Process Engneering,” Hongreung science press, Seoul(2012).
  3. Randolph AD, Larson MA, “Theory of Particulate Process,” 2nd ed. academic press, N.Y.(1988).
  4. Nyvlt J, “Industrial Crystallization from Solution,” Butterworth & co. Ltd. London(1971).
  5. Taevare NS, “Industrial Crystallization Process Simulation Analysis and Design,” Plenum press, N.Y.(1995).
  6. Son M, Kim G, Han K, Lee MW, Lim JT, Korean Chem. Eng. Res., 55(2), 141, 2017
  7. IHS Markit, Chemical Economics Handbook: Calcium Carbonate, Find-Ground and Precipitated(2014).
  8. Roskill Information Services, “Ground & Precipitated Calcium Carbonate: Global Industry Markets & Outlook,” 1st Ed.(2012).
  9. Kazuto T, Kiyoshi K, Yasunori N, Yasuhiro O, “Process for Preparing Calcium Carbonate,” US Patent 6, 190,633(2001).
  10. Ota Y, Goto N, Motoyama I, Iwashita T, Nomura K, US Patent 4, 824, 654(1989).
  11. Shang WY, Liu QF, He EG, Chen ST, Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 1, 431-434(2000).
  12. Uebo K, Yamazaki OR, Yoshida K, Adv. Powder Technol., 3(7), 71, 1992
  13. Lippmann F, “Sedimentary Carbonate Minerals,” Springer-Verlag (1973).
  14. Ogino T, Suzuki T, Sawada K, Geochim. Cosmochim. Acta, 51, 2757, 1987
  15. Suh HM, Keum YH, Lee MY, Jung JH, Shon BH, J. Environmental & Thermal Eng., 11(1), 19-34(2014).
  16. Han HK, Kwon CS, Jeon JS, Choi IJ, J. Korea Academia-industrial Cooporation Society, 11(10), 4069-4074 (2010).
  17. Westin K, Rasmuson AC, J. Colloid Interface Sci., 282(2), 359, 2005
  18. Westin KJ, Rasmuson AC, Desalination, 159(2), 107, 2003
  19. Pyun YR, Han HK, Jung HK, Korean Chem. Eng. Res., 47(2), 157, 2009
  20. Han HK, J. Korea Academia-industrial Cooporation Society, 18(7), 714-719(2017).
  21. Kim JH, Ahn JW, Park HS, Park CH, J. Korea Society for Geosys. Eng., 7(4), 95-102 (2004).
  22. Loftus E, et al., J. Quaternary Science (2015).