Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.5, 620-627, 2019
HEFA 공정으로 제조된 바이오항공유의 점화지연특성 분석
Analysis on Ignition Delay Characteristics of Bio Aviation Fuels Manufactured by HEFA Process
본 연구에서는 서로 다른 원료를 이용하여 HEFA 공정을 통해 제조한 국내외 바이오항공유(Bio-ADD, Bio-6308, Bio-7720)의 점화지연특성을 비교 및 분석하였으며, 이러한 바이오항공유의 실제 시스템에의 적용 가능성을 확인하기 위하여 기존에 사용되고 있는 석유계항공유(Jet A-1) 및 바이오항공유와 석유계항공유를 일정한 비율(50:50, v:v)로 혼합한 연료의 점화지연특성에 대해서도 분석하였다. 각 항공유의 점화지연시간은 CRU 장비를 사용하여 측정하였으며, 결과 해석을 위해 표면장력 측정, GC/MS 및 GC/FID 분석을 수행하였다. 그 결과, 모든 온도 조건에서 Jet A-1의 점화지연시간이 가장 길게 측정되었는데, 이는 aromatic compounds가 약 22.8% 존재하여 분해 과정에서 열적으로 안정하고 주변 산소와도 반응성이 낮은 benzyl radical이 생성되기 때문인 것으로 판단된다. 바이오항공유의 점화지연시간은 모두 비슷하게 측정되었는데, 이는 각 항공유를 구성하는 n-paraffin과 iso-paraffin의 비율(n-/iso-)이 약 0.12로 서로 비슷한 값을 가지며, cycloparaffin의 구성 비율도 약 3% 미만으로 크게 차이가 없기 때문인 것으로 해석된다. 또한, 국내외에서 개발된 바이오항공유(Bio-ADD, Bio-6308)를 석유계항공유와 50:50(v:v)으로 혼합한 연료의 점화지연시간은 혼합하지 않은 Jet A-1과 각 바이오항공유가 갖는 점화지연시간의 사잇값으로 측정되어, 기존에 사용 중인 시스템을 변경하거나 개선하지 않아도 적용이 가능함을 확인하였다.
In this study, ignition delay characteristics of various bio aviation fuels (Bio-ADD, Bio-6308, Bio-7720) produced by HEFA process using different raw materials were compared and analyzed. In order to confirm the feasibility of applying bio aviation fuel to actual system, ignition delay characteristics of petroleum-based aviation fuel (Jet A-1) and blended aviation fuel (50:50, v:v) also analyzed. Ignition delay time of each aviation fuel was measured by using CRU, surface tension measurement and GC/MS and GC/FID analysis were performed to interpret the results. As a result, ignition delay time of Jet A-1 was the longest at all temperature because it contains aromatic compounds about 22.8%. The aromatic compounds can produce benzyl radical which is thermally stable and has low reactivity with oxygen during decomposition process. In the case of bio aviation fuels, ignition delay times were measured similarly because the ratio of n-paraffin/iso-paraffin constituting each aviation fuel is similar (about 0.12) and the composition ratio of cycloparaffin also has no difference. In addition, ignition delay times of blended aviation fuels (50:50, v:v) were measured close to the mean value those of each fuel so it was confirmed that it can be applied without any changing or improving of existing system.
[References]
  1. Beginner’s Guide to Aviation Biofuels, 2nd ed., Air transport action group, Switzerland(2011).
  2. Susan VD, Jack S, Francisco B, Deger S, Alessandra S, Amr S, International Renewable Energy Agency, 2-4(2017).
  3. “ICAO Environmental Report 2016: Aviation and Climate Change,” International Civil Aviation Organization, 153-178(2016).
  4. Eric CW, Jakob LP, Christian E, Rasmus B, Nicolaj S, et al., Report NO. 538, Nordic Council of Ministers(2016).
  5. “Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons,” American Society for Testing and Materials(2016).
  6. “IATA Guidance Material for Biojet Fuel Management,” International Air Transport Association, 4-5(2012).“IATA Guidance Material for Biojet Fuel Management,” International Air Transport Association, 4-5(2012).
  7. John, B. H., Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, New York, 539-540(1988).
  8. Petrukhin NV, Grishin NN, Sergeev SM, Chem. Tech. Fuels Oils, 51(6), 581, 2016
  9. Zheng Z, Badawy T, Henein N, Sattler E, J. Eng. Gas Turbines Power, 135(6), 061501, 2013
  10. Bogin GE, DeFilippo A, Chen JY, Chin G, Luecke J, Ratcliff MA, Zigler BT, Dean AM, Energy Fuels, 25(12), 5562, 2011
  11. Vasu SS, Davidson DE, Hanson RK, Combust. Flame, 152(1-2), 125, 2008
  12. Kang SB, Jeong BH, Journal of the Korean Society of Propulsion Engineers, 23(2), 13-20(2019).
  13. “Determination of Ignition and Combustion Characteristics of Residual Fuels - Constant Volume Combustion Chamber Method,” Energy Institute(2006).
  14. http://www.spray-nozzle.co.uk/resources/engineering-resources/guide-to-spray-properties/4-droplet-size.
  15. Gohtani S, Sirendi M, Yamamoto N, Kajikawa K, Yamano Y, J. Dispersion Sci. Technol., 20(5), 1319, 1999
  16. Pilling MJ, Low-Temperature Combustion and Autoignition, 35th ed., Elsevier, Netherlands, 56-66(1997).
  17. Boot MD, Tian M, Hensen EJM, Sarathy SM, Prog. Energy Combust. Sci., 60, 1, 2017
  18. Simmie JM, Prog. Energy Combust. Sci., 29(6), 599, 2003
  19. Emdee JL, Brezinsky K, Glassman I, J. Phys. Chem., 96(5), 2151, 1992
  20. Rakesh KM, Characteristics and Control of Low Temperature Combustion Engines: Employing Gasoline, Ethanol and Methanol, Springer International Publishing, India, 139(2018).
  21. Luo YR, Comprehensive Handbook of Chemical Bond Energies, CRC Press, New York, 21-35(2007).
  22. Buda F, Heyberger B, Fournet R, Glaude PA, Warth V, Battin-Leclerc F, Energy Fuels, 20(4), 1450, 2006