Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.5, 606-610, 2019
보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서
Nonenzymatic sensor based on a carbon fiber electrode modified with Boron-doped Diamond for detection of glucose
본 연구에서 우리는 보론 도핑된 다이아몬드 나노물질을 이용하여 유연성 탄소 섬유 기반의 전극(CF-BDD 전극)을 개발하고, 이를 비효소적 글루코스 센서에 적용하여 전기화학적 특성을 확인하였다. 이 전극은 탄소 섬유 표면에 정전하 자기조립법을 이용하여 BDD 층을 증착하여 제작하였다. 이 전극 물질의 표면 구조는 주사전자 현미경(SEM)을 이용하여 분석하였으며, 전기화학적 특성 및 센싱 성능 분석은 시간대전류법(CA)와 순환전압 전류법(CV), 전기화학 임피던스(EIS)으로 실행하였다. 제작된 CF-BDD 전극은 산화-환원 화학종과 전극 계면 간의 effective direct electron transfer와 large effective surface area, high catalytic activity의 우수한 특성들을 보였다. 결과적으로, CF 센서와 비교에서 CF-BDD 센서는 더 넓은 선형 농도 범위(3.75~50 mM)와 더 빠른 감응 시간(3초 이내), 더 높은 감도(388.8 nA/mM) 등의 향상된 센싱 특성을 보였다. 따라서, 본 연구에서 개발된 전극 물질은 다양한 전기화학 센서 뿐 아니라, 웨어러블센서 소재로도 활용 가능할 것으로 기대된다.
In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.
[References]
  1. Lu F, Bo L, Guang Y, Yichuan H, Qin Z, Xuesong Y, Biosens. Bioelectron., 97, 196, 2017
  2. Lee SJ, Yoon HS, Xuan X, Park JY, Sens. Actuators B-Chem., 222, 1144, 2016
  3. Yang YL, Chuang MC, Lou SL, Wang J, Analyst, 135(6), 1230, 2010
  4. Windmiler JR, Wang J, Electroanalysis, 25(1), 29, 2013
  5. Perret A, Haenni W, Skinner N, Tang XM, Gandini D, Comninellis C, Correa B, Foti G, Diamond Relat. Mater., 8(2), 820, 1999
  6. Lee SK, Kim JH, Jeong MG, Song MJ, Lim DS, Nanotechnology, 21(50), 505302, 2010
  7. Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, Wang C, Colloids Surf. A: Physicochem. Eng. Asp., 419, 94, 2013
  8. Wu J, Qu Y, Anal. Bioanal. Chem., 385(7), 1330, 2006
  9. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y, Biosens. Bioelectron., 25(4), 901, 2009
  10. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R, Biosens. Bioelectron., 25(4), 832, 2009
  11. Bard AJ, Faulkner LR, Wiley, New York, 2001.
  12. Felix S, Chakkravarthy BP, Jeong SK, Grace AN, J. Electrochem. Soc., 162(6), H392, 2015