Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.4, 584-588, 2019
Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응
Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation
디젤엔진 시스템은 미세먼지 배출의 엄격해진 저감/제어 기준을 충족하기 위해서 산화촉매는 매우 중요한 기술 중에 하나이다. 본 연구에서는 효율적인 soot산화의 촉매로 Ag 나노입자가 loading된 La0.6Sr0.4Co0.2Fe0.8O3 섬유상 web 촉 매를 제시하였다. 제조된 촉매는 FE-SEM, EDS mapping, XRD, XPS 분석을 통해 특성을 평가하였다. Soot 산화성능 측정결과 Ag의 효율적인 촉매특성과 증가된 soot입자와 표면의 접촉면적으로 인하여 50% 산화온도 평가(T50= 490 °C) 에서 자연적인 산화보다 151 °C 가속화된 것을 확인하였다. 따라서 Ag가 loading된 촉매와 3차원적인 web 구조는 soot 산화에 효율적인 촉매후보군으로 확인하였다.
The catalytic combustion of particulate matter (PM) is one of the key technologies to meet emission standards of diesel engine system. Therefore, we herein suggest Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 perovskite web catalyst. They were produced by the electrospinning method. FE-SEM, EDS mapping, XRD, XPS were studied to investigate the crystal and morphological structures of loaded Ag particles and La0.6Sr0.4Co0.2Fe0.8O3 perovskite web catalyst. Following the catalytic soot oxidation, we found that the Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 perovskite web catalyst showed the higher catalytic activities (e.g., T50 = 490 °C) than the only La0.6Sr0.4Co0.2Fe0.8O3 perovskite web catalyst (e.g., T50 = 586 °C). Thus, this finding suggests that Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 perovskite web catalyst can be a promising candidate for enhancing the soot oxidation.
[References]
  1. Dockery DW, Ann Epidemiol, 19(4), 257, 2009
  2. Koltsakis GC, Stamatelos AM, Prog. Energy Combust. Sci., 23(1), 1, 1997
  3. Gorsmann C, Monatsh. Chem. Chem. Mon., 136(1), 91, 2005
  4. Dwyer H, Ayala A, Zhang S, Collins J, Huai T, Herner J, Chau W, J. Aerosol Sci., 41(6), 541, 2010
  5. Krishna K, Bueno-Lopez A, Makkee M, Moulijn JA, Appl. Catal. B: Environ., 75(3-4), 189, 2007
  6. Castoldi L, Matarrese R, Lietti L, Forzatti P, Appl. Catal. B: Environ., 90(1-2), 278, 2009
  7. Xue L, Zhang CB, He H, Teraoka Y, Appl. Catal. B: Environ., 75(3-4), 167, 2007
  8. Shimokawa H, Kusaba H, Einaga H, Teraoka Y, Catal. Today, 139(1-2), 8, 2008
  9. Li Z, Meng M, Zha Y, Dai Y, Hu T, Xie Y, Zhang J, Appl. Catal. B: Environ., 121-122(13), 65, 2012
  10. Pena MA, Fierro JLG, Chem. Rev., 101(7), 1981, 2001
  11. Stanmore BR, Brilhac JF, Gilot P, Carbon, 39, 2247, 2001
  12. Villani K, Kirschhock CEA, Liang D, Tendeloo GV, Martens JA, Angew. Chem.-Int. Edit., 45, 3106, 2006
  13. Zhang G, Zhao Z, Liu J, Jiang G, Duan A, Zheng J, Chen S, Zhou R, Chem. Commun., 46(3), 457, 2010
  14. Aneggi E, Wiater D, de Leitenburg C, Llorca J, Trovarelli A, ACS Catal., 4(1), 172, 2014
  15. Miceli P, Bensaid S, Russo N, Fino D, Nanoscale Res. Lett., 9, 254, 2014
  16. Lee C, Park JI, Shul YG, Einaga H, Teraoka Y, Appl. Catal. B: Environ., 174-175, 185, 2015
  17. Lee C, Jeon Y, Hata S, Park JI, Akiyoshi R, Saito H, Teraoka Y, Shul YG, Einaga H, Appl. Catal. B: Environ., 191, 157, 2016
  18. Lee C, Jeon Y, Kim T, Tou A, Park JI, Einaga H, Shul YG, Fuel, 212, 395, 2018
  19. Waller D, Lane JA, Kilner JA, Steele BCH, Mater. Lett., 27(4-5), 225, 1996
  20. Fadley CS, Shirley DA, J. Res. Natl. Bur. Stand. Sect. A: Phys. Chem. A, 74A(4), 543, 1970
  21. Gunawan C, Teoh WY, Marquis CP, Lifia J, Amal R, Small, 5(3), 341, 2009
  22. Qu ZP, Cheng MJ, Dong XL, Bao XH, Catal. Today, 93-95, 247, 2004
  23. Machida M, Murata Y, Kishikawa K, Zhang D, Ikeue K, Chem. Mater., 20, 4489, 2008