Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 413-419, 2019
용액 코팅법을 통한 연료전지용 불소계 전해질 강화복합막의 특성에 미치는 분산용매의 영향
Effect of Dispersion Solvent on Properties of Fluorinated Polymer Reinforced Composite Membrane for Fuel Cell by Solution Coating Method
최근 화석연료기반에서 친환경 수소 기반의 청정에너지원으로 전환되는 세계적 흐름에 따라, 수소연료전지의 고성능 저가격 핵심 소재 기술 개발에 많은 관심이 이루어지고 있다. 그 가운데 연료전지의 전해질로 사용되는 강화복합막의 기술 도입은 과불소계 술폰산 이오노머(Perfluorosulfonic acid, PFSA) 양의 감소 및 막 두께 감소를 통한 가격 저감 및 셀 저항 감소, 치수 안정성 개선 그리고 계면 안정성에 대한 확보가 가능하여 최종적으로 연료전지 성능 향상과 가격 절감이 동시에 가능하다. 본 연구에서는 연료전지용 불소계 전해질 강화복합막 코팅 공정에서 이오노머 분산용매에 따라 막 형성 및 물성 변화와 연료전지 성능에 미치는 영향에 대해 연구하였다.
In the recent, as a world demand of energy resources has been transformed from fossil fuels to hydrogenbased clean energy resources, a huge attention has been attracted to increase the performance and decrease a production cost of core materials in fuel cell technology. The utilization of reinforced composite membranes as electrolytes in the polymer electrolyte membrane fuel cells can reduce the use of high cost perfluorosulfonic acid (PFSA), mitigate the cell impedance, and improve the dimensional stability as well as the interfacial stability, giving rise to achieve both an improved performance and a reduction of production costs of the fuel cell devices. In this study, we investigate the effects of physical characteris tics and cell performances according to the various ionomer solvents in the solution based manufacturing process of reinforced composite electrolyte membrane.
[References]
  1. Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349, 2010
  2. Wang SY, Jiang SP, Natl. Sci. Rev., 4(2), 163, 2017
  3. Whittingham MS, Savinell RF, Zawodzinski T, Chem. Rev., 104, 4243, 2014
  4. Ahmet K, Adam ZW, Chem. Rev., 117, 987, 2017
  5. Ameduri B, Chem. Eur. J., 24(71), 18830, 2018
  6. Nouel KM, Fedkiw PS, Electrochim. Acta, 43(16-17), 2381, 1998
  7. Yamaguchi T, Miyata F, Nakao S, Adv. Mater., 15(14), 1198, 2003
  8. Liu FQ, Yi BL, Xing DM, Yu JR, Zhang HM, J. Membr. Sci., 212(1-2), 213, 2003
  9. Mohammad EZ, Fereidoon M, Ahmad R, Iran. Polym. J., 25(7), 589, 2016
  10. Dai JC, Teng XG, Song YQ, Ren J, J. Membr. Sci., 522, 56, 2017
  11. Ma CH, Yu TL, Lin HL, Huang YT, Chen YL, Jeng US, Lai YH, Sun YS, Polymer, 50(7), 1764, 2009
  12. Yeo RS, Polymer, 21(4), 432, 1980
  13. Wang Z, Tang HL, Li JR, Zeng Y, Chen LT, Pan M, J. Power Sources, 256, 383, 2014
  14. Ghahremani H, Moradi A, Abedini-Torghabeh J, Hassani SM, Der Chemica Sinica, 2(6), 212, 2011
  15. Vazquez G, Alvarez E, Navaza JM, J. Chem. Eng. Data, 40(3), 611, 1995
  16. Kreuer KD, Rabenau A, Weppner W, Angew. Chem.-Int. Edit., 21(3), 208, 1982
  17. Ludvigsson M, Lindgren J, Tegenfeldt J, J. Electrochem. Soc., 147(4), 1303, 2000
  18. Wang Z, Tang HL, Li JR, Zeng Y, Chen LT, Pan M, J. Power Sources, 256, 383, 2014
  19. Zhang WJ, Kish DL, Pintauro PN, ECS. Trans., 33(1), 635, 2010
  20. Baik KD, Hong BK, Kim MS, Renew. Energy, 57, 234, 2013