Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 408-412, 2019
Urea를 이용한 바나듐 레독스 흐름 전지용 카본 펠트 전극 개발
Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries
본 연구에서는 urea를 이용해 질소 도핑된 카본 펠트 전극을 제조하고 이를 바나듐 레독스 흐름 전지용 전극으로 적용하였다. Urea는 암모니아 보다 취급이 용이할 뿐 아니라 고온 열분해를 통해 NH2 라디칼이 발생하여 탄소 표면에 질소 작용기를 만들고 이는 바나듐 이온의 산화/환원 반응을 향상시키는 활성점(active site)로 작용한다. Urea로 활성화된 카본 펠트 전극은 150 mA cm2의 전류 밀도에서 14.9 Ah/L의 방전 용량을 보였으며 이는 산소작용기로 활성화된 카본 펠트(OGF) 및 비활성화 카본 펠트(GF)보다 각각 23% 및 187% 더 높았다. 이러한 결과는 urea로 활성화된 카본 펠트 전극이 레독스 흐름 전지용 전극 소재로 사용될 수 있는 가능성을 보여준다.
In this study, nitrogen doped carbon felt was prepared by pyrolysis of urea at high temperature and applied as an electrode for vanadium redox flow cell. Urea is easier to handle than ammonia and forms NH2 radicals at higher temperatures, creating a nitrogen functional group on the carbon surface and acting as an active site in the vanadium redox reaction. Therefore, the discharge capacity of activated carbon felt electrodes using urea was 14.9 Ah/L at a current density of 150 mA/cm2, which is 23% and 187% higher than OGF and GF, respectively. These results show the possibility that activated carbon felt electrode using urea can be used as electrode material for redox flow battery.
[References]
  1. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J, Chem. Rev., 111(5), 3577, 2011
  2. Dunn B, Kamath H, Tarascon JM, Science, 334(6058), 928, 2011
  3. Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970, 2013
  4. Sun B, Skyllas-Kazacos M, Electrochimica Acta, 37, 1253, 1992
  5. Sun B, Skyllas-Kazacos M, Electrochimica Acta, 37, 2459, 1992
  6. Yue L, Li W, Sun F, Zhao L, Xing L, Carbon, 48, 3079, 2010
  7. Li XG, Huang K, Liu S, Tan N, Chen L, Transactions of Nonferrous Metals Society of China, 17, 195-199(2007).
  8. Zhang WG, Xi JY, Li ZH, Zhou HP, Liu L, Wu ZH, Qiu XP, Electrochim. Acta, 89, 429, 2013
  9. Kil D, Lee HJ, Park S, Kim S, Kim H, J. Electrochem. Soc., 164, A3011, 1987
  10. Jin J, Fu X, Liu Q, Liu Y, Wei Z, Niu K, Zhang J, ACS Nano, 7, 4764, 2013
  11. Wang S, Zhao X, Cochell T, Manthiram A, J. Phys. Chem. Lett., 3, 2164, 2012
  12. He ZX, Shi L, Shen JX, He Z, Liu SQ, Int. J. Energy Res., 39(5), 709, 2015
  13. Park M, Ryu J, Kim Y, Cho J, Energy Environmental Science, 7, 3727, 2014
  14. Lee HJ, Kim H, J. Electrochem. Soc., 162(8), A1675, 2015
  15. Park S, Kim H, J. Mater. Chem. A, 3, 12276, 2015
  16. Liu D, Zhang XP, You TY, J. Power Sources, 273, 810, 2015
  17. Gong K, Du F, Xia Z, Durstock M, Dai L, Science, 323, 760, 2009
  18. Jiang D, Liu Q, Wang K, Qian J, Dong X, Yang Z, Du X, Qiu B, Biosens. Bioelectron., 54, 273, 2014