Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 400-407, 2019
100 kWth 급 순환유동층 시스템에서 무연탄 순산소연소 특성 연구
Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System
순산소 순환유동층 연소기술은 기후변화 및 연료 수급 문제들을 해결할 수 있는 기술로 주목 받고 있다. 순산소 순환유동층 연소기술은 배기가스 재순환 공정을 통해 이산화탄소를 비교적 쉽게 포집할 수 있으며 대기오염물질 배출도 줄일 수 있는 친환경 연소기술이다. 새롭게 개발된 100 kWth 급 순산소 순환유동층 연소 시스템은 연료다변화에 대응하기 위해 다양한 연료들의 순산소연소 특성을 분석하고 있으며, 본 연구에서는 높은 고정탄소 및 회분함량으로 인해 연소성이 낮은 연료로 알려진 무연탄을 활용하여 높은 이산화탄소를 생산하고 연소효율을 향상시키고자 하였다. 그 결과로서, 무연탄 순산소 연소는 아역청탄 공기연소 대비, 연소효율이 2% 향상되었으며 대기오염물질인 SO2, CO, NO은 각각 15%, 60%, 99% 감소하였다. 또한, 안정적인 순산소 순환유동층 연소를 통해 배기가스 내 94 vol.% 이상의 CO2가 포집될 수 있음을 확인하였다.
Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) technology has been paid attention to cope with the climate change and fuel supply problem. In addition, Oxy-CFBC technology as one of the methods for carbon dioxide capture is an eco-friendly that can reduce air pollutants, such as SO2, NO and CO through a flue gas recirculation process. The newly developed 100 kWth pilot-scale Oxy-CFBC system used for this research has been continuously utilizing to investigate oxy-combustion characteristics for various fuels, coals and biomasses to verify the possibility of fuel diversification. The anthracite is known as a low reactivity fuel due to a lot of fixed carbon and ash. Therefore, this study aims not only to improve combustion efficiency of an anthracite, but also to capture carbon dioxide. As a result, compared to air-combustion of sub-bituminous coal, oxy-combustion of anthracite could improve 2% combustion efficiency and emissions of SO2, CO and NO were reduced 15%, 60% and 99%, respectively. In addition, stable operating of Oxy-CFBC could capture above 94 vol.% CO2.
[References]
  1. Barnes I, IEA Clean Coal Centre(2015).
  2. Lockwood T, IEA Clean Coal Centre, CCC/226 ISBN 978-92-9029-546-4(2013).
  3. Cai R, Ke X, Lyu J, Yang H, Zhang M, Yue G, Limg W, Clean Energy, 1, 36, 2017
  4. Lee JM, Kim DW, Kim JS, Na JG, Lee SH, Energy, 35(7), 2814, 2010
  5. Kim DW, Lee JM, Kim JS, Kim JJ, Korean J. Chem. Eng., 24(3), 461, 2007
  6. Gonzalez-Salazar MA, Int. J. Greenh. Gas Con., 34, 106, 2015
  7. Lopez R, Menendez M, Fernandez C, Bernardo-Sanchez A, Energy, 148, 571, 2018
  8. Hnydiuk-Stefan A, Skladzien J, Energy, 128, 271, 2017
  9. Habib MA, Nemitallah M, Ben-Mansour R, Energy Fuels, 27(1), 2, 2013
  10. Weng M, Gunther C, Kather A, Energy Procedia, 37, 1480, 2013
  11. Hu YQ, Kobayashi N, Hasatani M, Fuel, 80(13), 1851, 2001
  12. Duan L, Zhao C, Zhou W, Qu C, Chen X, Int. J. Greenh. Gas Con., 5(4), 770, 2011
  13. Lasek JA, Janusz M, Zuwala J, Glod K, Iluk A, Energy, 62, 105, 2013
  14. Riaza J, Gil MV, Alvarez L, Pevida C, Pis JJ, Rubiera F, Energy, 41(1), 429, 2012
  15. Supranov VM, Ryabov GA, Mel’Nikov DA, Therm. Eng., 58, 593, 2011
  16. Li H, Li S, Ren Q, Li W, Xu M, Liu JZ, Lu Q, Energy Procedia, 63, 362, 2014
  17. Silvestre LS, Nsakala N, Scott LD, Energy Procedia, 1, 543, 2009
  18. Leckner B, Gomez-Barea A, Appl. Energy, 125, 308, 2014
  19. Mathekga H. I., Oboirien B. O., North B. C., Int. J. Energy Res., 40(7), 878, 2016
  20. Moon JH, Jo SH, Park SJ, Khoi NH, Seo MW, Ra HW, Yoon SJ, Yoon SM, Lee JG, Mun TY, Energy, 166, 183, 2019
  21. Won YS, Jeong AR, Choi JH, Jo SH, Ryu HJ, Yi CK, Korean J. Chem. Eng., 34(3), 913, 2017
  22. Han KH, Hyun JS, Choi WK, Lee JS, Korean Chem. Eng. Res., 47(5), 580, 2009
  23. Lee SH, Lee JM, Kim JS, Choi JH, Kim SD, Korean J. Chem. Eng., 38(4), 516, 2000
  24. Ziebik A, Gladysz P, Energy, 88, 37, 2015
  25. Jin B, Zhao HB, Zheng CG, Energy, 83, 416, 2015
  26. Shun DW, Bae DH, Han KH, Son JE, Kang Y, Wee YH, Lee JS, Ji PS, Korean J. Chem. Eng., 34(3), 321, 1996
  27. Lee JM, Kim JS, Lee EM, J. Korean Soc. Combust., 10(3), 1, 2005
  28. Al-Makhadmeh L, Ph.D. thesis, University of Stuttgart, Shaker Verlag Aachen(2009).
  29. Wall T, Liu YH, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng CD, Gupta R, Yamada T, Makino K, Yu JL, Chem. Eng. Res. Des., 87(8A), 1003, 2009
  30. Seddighi S, Energy, 118, 1286, 2017
  31. Li YH, Chen GB, Wu FH, Hsieh HF, Chao YC, Energy, 94, 766, 2016
  32. Winter F, Wartha C, Loffler G, Hofbauer H, Twenty-Sixth Symposium (International) on Combustion, 26(2), 3325-3334(1996).
  33. Basu P, Cen KF, Jestin L, “Boilers and Burners,” New York, Springer(2000).
  34. Gungor A, Fuel, 87(7), 1083, 2008
  35. Gyul’maliev AM, Shpirt MY, Solid Fuel Chem., 42(5), 263, 2008