Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 387-391, 2019
Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells
A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL- 101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of 916 m2 g-1, and thus excellent electro-catalytic activity for urea oxidation. A urea/H2O2 fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of 8.7 mWcm-2 with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.
[References]
  1. Lan R, Tao S, Irvine JTS, Energy Environ. Sci., 3, 438, 2010
  2. Xu W, Zhang H, Li G, Wu Z, Sci. Rep., 4, 5863, 2014
  3. Guo F, Cao DX, Du MM, Ye K, Wang GL, Zhang WP, Gao YY, Cheng K, J. Power Sources, 307, 697, 2016
  4. Ye K, Wang G, Cao D, Wang G, Topics in Current Chemistry, 376, 42(2018).
  5. Xu W, Wu Z, Tao S, Energy Technol., 4, 10, 2016
  6. Yan W, Wang D, Botte GG, Appl. Catal. B: Environ., 127, 221, 2012
  7. Wang L, Du TT, Cheng J, Xie X, Yang BL, Li MT, J. Power Sources, 280, 550, 2015
  8. Shi W, Ding R, Li XD, Xu QL, Liu EH, Electrochim. Acta, 242, 247, 2017
  9. Kumar R, Schechter A, ChemCatChem., 9, 3374, 2017
  10. Xu W, Du D, Lan R, Humphreys J, Wu Z, New J. Chem., 41, 4190, 2017
  11. Hameed RMA, Medany SS, J. Colloid Interface Sci., 513, 536, 2018
  12. Nguyen NS, Das G, Yoon HH, Biosen. Bioelectron., 77, 372, 2016
  13. Das G, Tesfaye RM, Won Y, Yoon HH, Electrochim. Acta, 237, 171, 2017
  14. Barakat NAM, El-Newehy MH, Yasin AS, Ghouri ZK, Al-Deyab SS, Appl. Catal. A: Gen., 510, 180, 2016
  15. Bhattacharjee S, Chen C, Ahn WS, RSC Adv., 4, 52500, 2014
  16. Sabouni R, Kazemian H, Rohani S, Microporous Mesoporous Mater., 175, 85, 2013
  17. Mishra P, Mekala S, Dreisbach F, Mandal B, Gumma S, Sep. Purif. Technol., 94, 124, 2012
  18. Li W, Liu J, Zhao D, Nat. Rev. Mater., 1, 16023, 2016
  19. Hibino T, Kobayashi K, Ito M, Nagao M, Fukui M, Teranishi S, Appl. Catal. B: Environ., 231, 191, 2018
  20. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I, Science, 309, 2040, 2005
  21. Montazerolghaem M, Aghamiri SF, Tangestaninejad S, Talaie MR, RSC Adv., 6, 632, 2016
  22. Jiang D, Burrows AD, Edler KJ, CrystEngComm., 13, 6916, 2011
  23. Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Wei Q, Fan M, RSC Adv., 3, 22739, 2013
  24. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR, Chem. Rev., 112(2), 724, 2012
  25. Moon HR, Lim DW, Suh MP, Chem. Soc. Rev., 42, 1807, 2013
  26. Saha D, Deng SG, Langmuir, 25(21), 12550, 2009
  27. Tran TQN, Das G, Yoon HH, Sens. Actuators B-Chem., 243, 78, 2017
  28. Vedharathinam V, Botte GG, Electrochimica Acta., 81, 292, 2012
  29. Lan R, Tao SW, J. Power Sources, 196(11), 5021, 2011