Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.6, 914-920, 2018
니켈기반 촉매를 사용한 메탄가스-수증기 개질반응의 모사
Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst
본 연구에서는 상용 니켈-알루미나 촉매를 이용한 메탄가스-수증기 개질반응에서의 고유반응속도 상수를 결정하였다. 반응메커니즘을 반영하기 위해 Langmuir-Hinshelwood chemisorption 이론에 기반한 반응속도식을 사용하였고 반응온도(630~750 °C) 및 반응물의 분압(S/C ratio = 2.7~3.5)을 실험변수로 설정하였다. 실험을 통해 얻어진 데이터를 기반으로 효율적인 최적화 알고리즘을 이용하여 최적 고유반응속도상수들을 결정하였다. 최종적으로 제안된 이 수학적 반응 모델은 촉매반응기의 설계 및 운전조건 최적화에 활용 가능하다.
The intrinsic kinetic parameters of steam-methane reforming reactions over commercial nickel-based catalyst were determined. The reaction rate equations were derived from the reaction mechanism-based Langmuir-Hinshelwood chemisorption theory. As the experimental variables for the kinetic study, the reaction temperature ranged from 630 to 750 °C and the steam-to-carbon ratio also varied from 2.7 to 3.5. Based on the experimental data, the efficient optimization algorithm was used to determine the intrinsic kinetic parameters due to the high-dimensional objective function. It is confirmed that the parameter estimation results showed good agreement with the experimental values. Thus, this proposed mathematical reaction model can be used as the basic information to design a catalytic reactor and to optimize operating conditions.
[References]
  1. https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement.
  2. Numaguchi T, Kikuchi K, Chem. Eng. Sci., 43, 2295, 1988
  3. Kim DH, Lee TJ, Korean Chem. Eng. Res., 29(4), 396, 1991
  4. Sauk JK, Shul YG, Jung DH, Kim CH, Shin DR, Yang JC, Korean Chem. Eng. Res., 37, 21, 1999
  5. Yoon WL, Park JW, Rhee YW, Han MW, Jeong JH, Park JS, Jung H, Lee HT, Kim CS, Korean Chem. Eng. Res., 41(4), 389, 2003
  6. Rostrup-Nielsen T, Catal. Today, 106(1-4), 293, 2005
  7. Hoang DL, Chan SH, Ding OL, Chem. Eng. Sci., 112(1-3), 1, 2005
  8. Barelli L, Bidini G, Gallorini F, Servili S, Energy, 33(4), 554, 2008
  9. Oliveira ELG, Grande CA, Rodrigues AE, Can. J. Chem. Eng., 87(6), 945, 2009
  10. Oliveira ELG, Grande CA, Rodrigues AE, Chem. Eng. Sci., 65(5), 1539, 2010
  11. Avraam DG, Halkides TI, Liguras DK, Bereketidou OA, Goula MA, Int. J. Hydrog. Energy, 35(18), 9818, 2010
  12. Park JE, Park JH, Yim SD, Kim CS, Park ED, Korean Chem. Eng. Res., 49(1), 21, 2011
  13. Maier L, Schadel B, Delgado HK, Tischer S, Deutschmann O, Top. Catal., 54(13-15), 845, 2011
  14. Baek SM, Kang JH, Lee KJ, Nam JH, Int. J. Hydrog. Energy, 39(17), 9180, 2014
  15. Won JM, Park GW, Lee JW, Hong SC, Korean Chem. Res., 54(4), 560, 2016
  16. Abbas SZ, Dupont V, Mahmud T, Int. J. Hydrog. Energy, 42(5), 2889, 2017
  17. Akers WW, Camp DP, AIChE J., 1(4), 471, 1955
  18. Ross JRH, Steel MCF, J. Chem. Soc.-Faraday Trans., 69, 10, 1973
  19. Rostrup-Nielsen JR, J. Catal., 31(2), 173, 1973
  20. Quach TQP, Rouleau D, J. Appl. Chem. Biotechnol., 25(6), 445, 1975
  21. Munster P, Grabke HJ, J. Catal., 72(2), 279, 1981
  22. De Deken JC, Devos EF, Froment GF, Chem. Reaction Eng. Boston., 196(16), 181, 1982
  23. Xu J, Froment GF, AIChE J., 35(1), 88, 1989
  24. Ko KD, Lee JK, Park DK, Shin SH, Korean Chem. Res., 12(4), 478, 1995
  25. Hou KH, Hughes R, Chem. Eng. J., 82(1-3), 311, 2001
  26. Zeppieri M, Villa PL, Verdone N, Scarsella M, De Filippis P, Appl. Catal. A: Gen., 387(1-2), 147, 2010
  27. Jakobsen JG, Jakobsen M, Chorkendorff I, Sehested J, Catal. Lett., 140(3-4), 90, 2010
  28. Pantoleontos G, Kikkinides ES, Georgiadis MC, Int. J. Hydrog. Energy, 37(21), 16346, 2012
  29. Elnashaie SSEH, Adris AM, Al-Ubaid AS, Soliman MA, Chem. Eng. Sci., 45(2), 491, 1990
  30. Soliman MA, Adris AM, Al-Ubaid AS, Elnashaie SSEH, J. Chem. Techol. Biotechnol., 55(2), 131, 1992
  31. Elnashaie SSEH, Adris AM, Soliman MA, Al-Ubaid AS, Can. J. Chem. Eng., 70(4), 786, 1992
  32. Elnashaie SSEH, Abashar MEE, Chem. Eng. Process., 32(3), 177, 1993
  33. Ding Y, Alpay E, Chem. Eng. Sci., 55(18), 3929, 2000
  34. Egea JA, Vries D, Alonso AA, Banga JR, Ind. Eng. Chem. Res., 46(26), 9148, 2007
  35. Mansoornejad B, Mostoufi N, Jalali-Farahani F, Comput. Chem. Eng., 32, 1447, 2007
  36. Pacheco M, Sira J, Kopasz J, Appl. Catal. A: Gen., 250(1), 161, 2003
  37. Michailos S, “Kinetic Modelling and Dynamic Sensitivity Analysis of a Fast Pyrolysis Fluidised Bed Reactor for Bagasse Exploitation,” Biofuels, Available online (2018).