Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.6, 798-803, 2018
이차전지 음극활물질 Si/PC/CNF/PC 복합 소재의 전기화학적 특성
Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery
Si을 리튬이온전지 음극활물질로 사용하기 위해 입도를 0.5 μm 보다 작은 크기로 제어하였고 표면에 탄소를 약 10 nm 두께로 코팅하였다. 그 위에 탄소섬유를 50~150 wt% 양으로 성장시키고 다시 한 번 탄소코팅을 진행하였다. 이렇게 만들어진 Si 합성물질은 전기전도성을 높이기 위한 공정으로 이종 금속을 혼합하였으며 수명 특성을 개선하기 위해 흑연과 복합화하였다. 실험 변수에 따른 재료들의 물리화학적 특성을 XRD, SEM 및 TEM을 사용하여 측정하였고 코인셀을 제조하여 전기화학적 특성을 평가하였다. Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber)보다 Si/PC/CNF/PC가 전체적으로 Si 함량이 줄어 방전용량은 상대적으로 낮게 나타났지만 전지평가에서 중요한 수명특성에서는 좋은 결과를 보여주었다. 0.2 C rate에서 1512 mA h g-1의 초기 방전 용량과 78%의 초기 효율을 나타내었고 10 싸이클 에서 94%의 용량 보존율을 보여주었다.
In order to use Si as an anode material for lithium-ion battery, the particle size was controlled to less than 0.5 μm and carbon was coated on the surface with the thickness less than 10 nm. The carbon fiber was grown on the Si surface with 50~150 wt%, and the carbon coating was carried out once again. The Si composite material was mixed with dissimilar metals to increase the conductivity, and graphite was mixed to improve cyclic life characteristics. The physical and electrochemical characteristics of composite materials were measured with XRD, SEM, TEM and coin cell. The discharge capacity of Si/PC/CNF/PC was lower than that of Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber). However, the cyclic life of Si/PC/CNF/PC was higher. Initial discharge capacity of 1512 mA h g-1 at 0.2 C rate and initial efficiency of 78% were shown. It also showed a capacity retention of 94% in 10 cycles.
[References]
  1. Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25(6), 592, 2014
  2. Yu J, Zhan HH, Wang YH, Zhang ZLI, Chen H, Li H, Zhong ZY, Su FB, J. Power Sources, 228, 112, 2013
  3. Zhu XY, Chen H, Wang YH, Xia LH, Tan QQ, Li H, Zhong ZY, Su FB, Zhao XS, J. Mater. Chem., 1, 4483, 2013
  4. Jang SM, Miyawaki J, Tsuji M, Mochida I, Yoon SH, Carbon, 47(15), 3383, 2009
  5. Cen YJ, Qin QW, Sisson RD, Liang JY, Electrochim. Acta, 251, 690, 2017
  6. Yamauchi Y, Hino T, Ohzeki K, Kubota Y, Deyama S, Carbon, 43(6), 1334, 2005
  7. Li SQ, Chi Y, Li RD, Yan JH, Cen KF, Powder Technol., 126(3), 228, 2002
  8. Lee HK, Choi SM, J. Mech. Sci. Technol., 27(10), 3191, 2013
  9. Yoshio M, Tsumura T, Dimov N, J. Power Sources, 163(1), 215, 2006
  10. Ryu JH, Oh EY, Oh SM, J. Korean Electrochem. Soc., 7(1), 32, 2004
  11. Dimov N, Kugino S, Yoshio A, J. Power Sources, 136(1), 108, 2004
  12. Larcher D, Mudalige C, George AE, Porter V, Gharghouri M, Dahn JR, Solid State Ion., 122(1-4), 71, 1999
  13. Hanai K, Liu Y, Imanishi N, Hirano A, Matsumura M, Ichikawa T, Takeda Y, J. Power Sources, 146(1-2), 156, 2005
  14. Farooq U, Choi JH, Pervez SA, Yaqub A, Kim DH, Lee YJ, Saleem M, Doh CH, Mater. Lett., 136, 254, 2014
  15. Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ, Electrochim. Acta, 136, 112, 2014
  16. Kim JH, Sohn HJ, Kim H, Jeong G, Choi W, J. Power Sources, 170(2), 456, 2007
  17. Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y, Solid State Ion., 168(1-2), 61, 2004
  18. Naji A, Willmann P, Billaud D, Carbon, 36(9), 1347, 1998
  19. Ko MS, Chae SJ, Ma JY, Kim NH, Lee HW, Cui Y, Cho JP, Nature Energy, 1, 16113, 2016