Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.5, 752-760, 2018
백금담지 알루미나 촉매와 오존 산화제 동시 적용에 의한 탄소 입자상 물질의 저온 산화반응
Simultaneous Application of Platinum-Supported Alumina Catalyst and Ozone Oxidant for Low-temperature Oxidation of Soot
경유자동차에서 배출되는 탄소 입자상 물질 연소 온도구간을 낮추는 것은 미세먼지 배출 저감과 내연기관 자동차의 고연비·저배출 성능 구현이라는 측면에서 매우 중요한 기술적 과제 중 하나이다. 본 논문에서는 탄소 입자상 물질의 산화를 위해 오존을 산화제로 이용하고 백금계 산화촉매를 동시에 적용했을 때 관찰되는 150 °C 부근 저온영역에서의 탄소 입자상 물질 연소반응에 관하여 논했다. 백금계 산화촉매를 적용했을 때 오존에 의한 탄소 입자상 물질의 산화속도를 크게 개선시키지 못했지만 연소반응의 이산화탄소 선택도를 향상시켰으며, 탄소 입자상 물질의 선택적 산화를 위해 고려된 NO의 NO2로의 사전 전환(NO2-rich 조건)은 NO2와 오존의 상호 상승작용에 의해 150 °C 부근 온도영역에서의 탄소상 입자물질 연소성능을 높이는데 효과가 있었다.
The lowering of temperature for combustion of diesel particulate matters (or diesel soot) is one of the important tasks in automotive industry that is searching for a way to meet up “high-fuel efficiency, low-emission” standard. In this study, it was discussed how the use of ozone over platinum-based catalyst promotes a low-temperature soot oxidation occurred at 150 °C. The use of platinum catalyst did not increase oxidation rate largely but was very effective in improving the selectivity of carbon dioxide. The pre-oxidation of NO into NO2 using ozone was rather crucial in improving the oxidation rate of soot at 150 °C.
[References]
  1. Korean Ministry of Environment, Administrative Publication No. 11-1480000-001435-01, April, 2016.
  2. Jeong JW, News Info. Chem. Eng., 33(4), 431, 2015
  3. USDRIVE Workshop Report (2012): https://www.pnnl.gov/main/publications/external/technical_ Reports/PNNL-22815.pdf.
  4. DieselNet Technology: Emission Aftertreatment/Catalyst Technologies/Diesel Catalysts/Diesel Oxidation Catalyst, https://www.dieselnet.com/tech/cat_doc.php.
  5. Park SH, Lee KY, Cho SJ, Clean Technol., 22(4), 211, 2016
  6. DieselNet Technology: Emission Aftertreatment/Diesel Filter Systems/CRT Filter, https://www.dieselnet.com/tech/dpf_crt.php.
  7. Jeong H, Bae J, Han JW, Lee H, ACS Catal, 7(10), 7097, 2017
  8. Bekki S, J. Geophys. Res., 102(10), 751, 1997
  9. Hirata H, Kakanohara M, Ibe M, “Exhaust gas Purification System Utilizing Ozone,” US Patent 8,051,643 B2(2011).
  10. Okubo M, Kuroki T, Miyairi Y, Yamamoto T, “Lowtemperature Soot Incineration of Diesel Particulate Filter Using Remote Nonthermal Plasma Induced by a Pulsed Barrier Discharge,” 40(6), 1504-1512(2004).
  11. Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T, Plasma Chem. Plasma Process., 28(2), 173, 2008
  12. Itoh Y, Sakakibara Y, Shinjoh H, RSC Advances, 4, 19144, 2014
  13. Jeguirim M, Tschamber V, Brilhac JF, Ehrburger P, Fuel, 84(14-15), 1949, 2005
  14. Wang ZH, Zhou JH, Fan JR, Cen KF, Energy Fuels, 20(6), 2432, 2006
  15. Fino D, Bensaid S, Piumetti M, Russo N, Appl. Catal. A: Gen., 509, 75, 2016
  16. Diesel Net Technology: Emission Aftertreatment/Diesel Filter Systems/Catalyzed Diesel Filters, https://www.dieselnet.com/tech/dpf_cat.php.
  17. Tighe CJ, Twigg MV, Hayhurst AN, Dennis JS, Ind. Eng. Chem. Res., 50(18), 10480, 2011
  18. Azambre B, Collura S, Trichard JM, Weber JV, Appl. Surf. Sci., 253(4), 2296, 2006
  19. Lin FW, Wang ZH, Ma Q, He Y, Whiddon R, Zhu YQ, Liu JZ, Energy Fuels, 30(6), 5101, 2016
  20. Mul G, Neeft JPA, Kaptejin F, Moulijn JA, Carbon, 36(9), 1269, 1998