Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.5, 705-710, 2018
백금 나노입자가 분산된 3차원 산화구리 나노구조체 기반의 글루코스 검출용 비효소적 전기화학 센서 개발
Non-Enzymatic Glucose Sensor Based on a Copper Oxide Nanoflowers Electrode Decorated with Pt Nanoparticles
본 연구에서는 백금 나노입자가 분산된 산화구리 나노구조체 기반의 비효소적 글루코스 센서를 개발하였다. 3차원 구조의 산화구리 나노구조체는 hydrothermal method를 통해 Cu foil 위에 직접 합성되었으며, 합성된 나노구조체 표면 위에 전기화학적 증착법으로 백금 나노입자들을 분산시켜 전극을 제작하였다. 준비된 전극 샘플의 표면 구조는 주사 전자 현미경(SEM)과 에너지분산형 분광기(EDS)을 이용하여 분석하였으며, 전기화학적 특성 및 센싱 성능은 알칼리 상태에서 시간대전류법 (CA)과 순환전압 전류법(CV)을 통하여 조사하였다. 개발된 비효소적 글루코스 센서는 산화구리 나노구조체와 백금 나노입자의 접목에 의한 시너지 효과 덕분에 높은 감도와 넓은 선형 구간, 빠른 감응 속도 등의 향상된 센싱 특성을 보였다.
An electrochemical glucose sensor with enzyme-free was fabricated using Pt nanoparticles (Pt NPs) decorated CuO nanoflowers (CuO NFs). 3-D CuO nanoflowers film was directly synthesized on Cu foil by a simple hydrothermal method and Pt NPs were dispersed on the petal surface of CuO NFs through electrochemical deposition. This prepared sample was noted to Pt NPs-CuO NF. Morphology of the Pt NPs-CuO NFs layer was analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The electrochemical properties and sensing performances were investigated using cyclic voltammetry (CV) and chronoamperometry (CA) under alkaline condition. The sensor exhibited a high sensitivity, wide liner range and fast response time. Its excellent sensing performance was attributed to the synergistic effect of the Pt NPs and CuO nanostructure.
[References]
  1. Chung Y, Kwon Y, Korean Chem. Eng. Res., 53(6), 802, 2015
  2. Jena BK, Raj CR, Chem. Eur. J., 12, 2702, 2006
  3. Myung Y, Jang DM, Cho YJ, Kim SJ, Park J, Kim JU, Choi Y, Lee CJ, J. Phys. Chem. C, 113, 1251, 2009
  4. Li X, Zhu QY, Tong SF, Wang W, Song WB, Sens. Actuators B-Chem., 136, 444, 2009
  5. Ciftci H, Tamer U, React. Funct. Polym., 72(2), 127, 2012
  6. Yoon SS, Ramadoss A, Saravanakumar B, Kim SJ, J. Electroanal. Chem., 717-718, 90-95(2014).
  7. Yang Y, Fu R, Wang H, Wang C, Microchim Acta., 180, 1249, 2013
  8. Song MJ, Lee SK, Kim JH, Lim DS, J. Electrochem. Soc., 160(4), B43, 2013
  9. Liu Y, Chu Y, Zhuo Y, Li M, Li L, Dong L, Cryst. Growth Des., 7(3), 467, 2007
  10. Song MJ, Hwang SW, Whang D, Talanta, 80, 1648, 2010
  11. Marioli JM, Kuwana T, Electrochim. Acta, 37, 1187, 1992
  12. Luo S, Su F, Liu C, Li J, Liu R, Xiao Y, Li Y, Liu X, Cai Q, Talanta, 86, 157, 2011
  13. Kang X, Mai Z, Zou X, Cai P, Mo J, Anal. Biochem., 363(1), 143, 2007
  14. Hoa LT, Sun KG, Hur SH, Sens. Actuators B-Chem., 210, 618, 2015
  15. Felix S, Chakkravarthy BP, Jeong SK, Grace AN, J. Electrochem. Soc., 162(6), H392, 2015
  16. Bard AJ, Faulkner LR, John Wiley and Sons., New York, Chichester, Brisbane, Toronto(1980).
  17. Wu HX, Cao WM, Li Y, Liu G, Wen Y, Yang HF, Yang SP, Electrochim. Acta, 55(11), 3734, 2010
  18. Li Y, Huang F, Chen J, Mo T, Li S, Wang F, Feng S, Li Y, Int. J. Electrochem. Sci., 8, 6332, 2013
  19. Liu L,Qi W, Gao X, Wang C, Wang G, J. Alloy. Compd., In press (2018).
  20. Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C, Anal. Chem., 81, 7271, 2009