Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.5, 694-704, 2018
SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application
Novel SnO2 mixed biochar composite was prepared from banana peel developed as electrode material for supercapacitor using simple chemical co-precipitation method. The physiochemical and morphological properties of activated composite SnO2 mixed biochar were investigated with XRD, FTIR, UV-vis, FESEM and HRTEM. The composite accounts for outstanding electrochemical behavior such as high specific capacitance, significant rate capability and leading to good cycle retention up to 3500 cycles when used as electrode material for supercapacitors. Highly permeable SnO2 mixed biochar derived from banana peel exhibited maximum specific capacitance of 465 F g-1 at a scan rate of 10 mV s-1 by cyclic voltammetry (CV) and 476 Fg-1 at current density of 0.15 Ag-1 by charge discharge studies significantly higher about 47% than previously reported identical work on banana peel biochar.
[References]
  1. Wang L, Li X, Ma J, Wu Q, Duan X, Sust. Energy., 2(2), 39, 2014
  2. Pham HD, Pham VH, Oh ES, Chung JS, Kim S, Korean Chem. Engg. Res., 29(1), 125, 2012
  3. Kim km, Lee YG, Ko JM, Korean Chem. Eng. Res., 55(4), 467, 2017
  4. Bagheri AR, Ghaedi M, Asfaram A, Jannesar R, Goudarzi A, Ultrason. Sonochem., 35(a), 112, 2017
  5. Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB, J. Hazard. Mater., 192(3), 1122, 2011
  6. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King’ondu CK, Holt CM, Olsen BC, ACS Nano, 7(6), 5131, 2013
  7. Yao Y, Wu F, Nano Energy., 17, 91, 2015
  8. Song S, Ma F, Wu G, Ma D, Geng W, Wan J, J. Mater. Chem. A, 3(35), 18154, 2015
  9. Ma G, Zhang Z, Sun K, Peng H, Yang Q, Ran F, Lei Z, RSC Adv., 5(130), 107707, 2015
  10. Wang P, Qiao B, Du Y, Li Y, Zhou X, Dai Z, Bao J, J. Phys. Chem. C, 119(37), 21336, 2015
  11. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D, Energy Environ. Sci., 8(3), 941, 2015
  12. Thangavel R, Kaliyappan K, Kang K, Sun X, Lee YS, Adv. Eng. Mater., 6(7), 1, 2016
  13. Peng H, Ma GF, Sun KJ, Zhang ZG, Yang Q, Lei ZQ, Electrochim. Acta, 190, 862, 2016
  14. Yuan H, Deng L, Qi Y, Kobayashi N, Tang J, Sci. World Journal., 2014, 1, 2014
  15. Divyashree A, Shoriya ABAM, Yallappa S, Chaitra K, Kathyayini N, Hegde G, J. Energy Chem., 25(5), 880, 2016
  16. Zhu G, Ma L, Lv H, Hu Y, Chen T, Chen R, Liang J, Wang X, Wang Y, Yan C, Nanoscale, 9(3), 1237, 2017
  17. Thambidurai A, Lourdusamy JK, John JV, Ganesan S, Korean J. Chem. Eng., 31(2), 268, 2014
  18. Maurya DP, Singla A, Negi S, Biotech., 5(5), 597, 2015
  19. Liu Z, Balasubramanian R, “Upgrading of Waste Biomass by Hydrothermal Carbinization (HTC) and Low Temperature Pyrolysis (LTP): a Comparative Evaluation,” 115, 857-864(2014).
  20. Chun Y, Sheng G, Chiou CT, Xing B, Environ. Sci. Technol., 38(17), 4649, 2004
  21. Wang M, Sheng G, Qiu Y, Int. J. Environ. Sci. Technol., 12(5), 1719, 2015
  22. Huang X, Kim M, Suh H, Kim I, Korean J. Chem. Eng., 33(7), 2228, 2016
  23. Kouchachvili L, Entchev E, Mater. Today Energy., 6, 136, 2017
  24. Yao W, Zhou H, Lu Y, J. Power Sources, 241, 359, 2013
  25. Sultana S, Kishore D, Kuniyil M, Khan M, Siddiqui MRH, Alwarthan A, Prasad K, Ahmad N, Adil SF, Arab. J. Chem., 10(4), 448, 2017
  26. Varala R, Narayana V, Kulakarni SR, Khan M, Alwarthan A, Adil SF, Arab. J. Chem., 9(4), 550, 2016
  27. Zhao Y, Rana W, Xiong DB, Zhang L, Xu J, Faming G, Mater. Lett., 118, 80, 2014
  28. Channu VSR, Holze R, Wicker SSA, Walker EH, Williams QL, Kalluru RR, Mater. Sci. Appl., 2(9), 1175, 2011
  29. Sun P, Hui C, Khan RA, Du J, Zhang Q, Zhao YH, Sci. Rep., 5, 12638, 2015
  30. Chaudhary G, Sharma AK, Bhardwaj P, Kant K, Kaushal I, Mishra AK, J. Energy Chem., 26(1), 175, 2017
  31. Ragupathy S, Sathya T, J. Mater. Sci. Mater. Electron., 27(6), 5570, 2016
  32. Hesas RH, Arami-Niya A, Daud WMAW, Sahu J, BioResour., 8(2), 2950, 2013
  33. Gundrizer T, Davydov A, React. Kinet. Catal. Lett., 3(1), 63, 1975
  34. Gu F, Wang SF, Song CF, Lu MK, Qi YX, Zhou GJ, Xu D, Yuan DR, Chem. Phys. Lett., 372(3-4), 451, 2003
  35. Zhou J, Zhang M, Hong J, Fang J, Yin Z, Appl. Phys. A-Mater. Sci. Process., 81(Z), 177, 2005
  36. Launcr H, Wilson W, Flynn JH, J. Res. Natl. Bur. Stand., 51, 5, 1953
  37. Launcr H, Wilson W, Flynn JH, J. Res. Natl. Bur. Stand., 51(5), 237, 1953
  38. Tapre A, Jain R, Int. J. Adv. Eng. Res. Stud, 1(3), 272, 2012
  39. Kumar KS, Bhowmik D, J. Pharmacogn. Phytochem., 1, 3, 2012
  40. Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR, J. Phys. Chem. B, 108(24), 8119, 2004
  41. Bhagwat AD, Sawant SS, Ankamwar BG, Mahajan CM, J. Nano Electron. Phys., 7(4), 4037, 2015
  42. Genovese M, Jiang J, Lian K, Holm N, J. Mater. Chem. A, 2015(3), 2903, 2014
  43. El Korhani O, Zaouk D, Cerneaux S, Khoury R, Khoury A, Cornu, D, Nanoscale Res. Lett., 8(121), 3, 2013
  44. Li X, Li T, Zhong Q, Zhang X, Li H, Huang J, Mater. Lett., 130, 232, 2014
  45. Wang L, Shen L, Zhu L, Jin H, Bing N, Wang L, J. Nanomater., 2012, 32, 2012
  46. Chen S, Xin Y, Zhou Y, Zhang F, Ma Y, Zhou H, Qi L, J. Mater. Chem. A, 2(37), 15582, 2014
  47. Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han SH, Ahn H, J. Alloy. Compd., 509, 6677, 2011
  48. Wang K, Wu H, Meng Y, Wei Z, Small, 10(1), 14, 2014
  49. Sun JQ, Wang JS, Wu XC, Zhang GS, Wei JY, Zhang SQ, Li H, Chen DR, Cryst. Growth Des., 6(7), 1584, 2006
  50. Shaziman S, Ismail AS, Mamat MH, Zoolfakar AS, IOP Publishing, City., 99(4), 012016, 2015
  51. Wahid KA, Lee WY, Lee HW, Teh AS, Bien DCS, Abd Azid I, Appl. Surf. Sci., 283, 629, 2013
  52. Mane RS, Chang J, Ham D, Pawar BN, Ganesh T, Cho BW, Lee JK, Han SH, Curr. Appl. Phys., 9(1), 87, 2009
  53. Jiang JH, Zhang L, Wang XY, Holm N, Rajagopalan K, Chen FL, Ma SG, Electrochim. Acta, 113, 481, 2013
  54. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, Wu ZY, Yu SH, ACS Nano, 6(8), 7092, 2012
  55. Zheng JP, Jow TR, J. Electrochem. Soc., 142(1), L6, 1995
  56. Srinivasan V, Weidner JW, J. Electrochem. Soc., 144(8), L210, 1997
  57. Lin C, Ritter JA, Popov BN, J. Electrochem. Soc., 146(9), 3155, 1999
  58. Genovese M, Jiang J, Lian K, Holm N, J. Mater. Chem. A, 3(6), 2903, 2015
  59. Lei Z, Sun X, Wang H, Liu Z, Zhao X, ACS Appl. Mater. Interfaces., 5(15), 7501, 2013
  60. Chen H, Zhou S, Chen M, Wu L, J. Mater. Chem., 22(48), 25207, 2012
  61. Kim JG, Nam SH, Lee SH, Choi SM, Kim WB, ACS Appl. Mater. Interfaces., 3(3), 828, 2011
  62. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK, Angew. Chem.-Int. Edit., 119(5), 764, 2007
  63. Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X, ACS Appl. Mater. Interfaces, 6(3), 2174, 2014
  64. Yang XW, Zhu JW, Qiu L, Li D, Adv. Mater., 23(25), 2833, 2011
  65. Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC, Adv. Mater., 19(17), 2341, 2007
  66. Xiao F, Xu Y, J. Mater. Sci. - Mater. Electron., 24, 1913, 2013
  67. Wang Y, Zhang Y, Pei L, Ying D, Xu X, Zhao L, Jia J, Cao X, Sci. Rep., 7, 2017