Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.5, 687-693, 2018
유기인산계 추출제를 이용한 에멀젼형 액막법에 의해 푸란유도체를 함유하는 모사 바이오매스 가수분해액으로부터 초산의 분리
Separation of Acetic Acid from Simulated Biomass Hydrolysates Containing Furans by Emulsion Liquid Membranes with an Organophosphorous Extractant
바이오매스 가수분해액으로부터 당을 정제하는 동안 발효 저해물질들의 선택적인 제거 및 회수는 목질계 바이오매스로부터 바이오 알코올을 생성하는 전체 공정의 경제적 효율성을 높일 수 있다. 이 연구에서는 에멀젼형 액막계에서 페놀화합물이 없는 모사 바이오매스 가수분해액에 있는 푸란유도체가 초산 추출에 미치는 영향이 조사되었다. 특별한 조작 조건하에서 5분내에 99%이상의 초산을 추출할 수 있었으며, 이 때 푸르푸랄과 5-hydroxymethylfurfural의 추출율은 각각 10%와 4% 내외의 값을 가졌다. 또한, 원료상에 있는 푸란유도체들의 초기 농도가 높을수록 초산의 추출속도는 낮았는데, 푸르푸랄이 5-hydroxymethylfurfural 보다 그 영향이 더 컸다. 따라서, 초산 추출 전에 가수분해액으로부터 푸르푸랄을 우선적으로 제거한다면 에멀젼형 액막법이 보다 경제성이 있는 초산 제거법이 될 것으로 보인다.
The selective removal and recovery of fermentation inhibitors during purification of sugars from biomass hydrolysates can increase the economic efficiency of the entire process to produce bioalcohol from lignocellulosic biomass. This study investigated the effect of furans in phenols-free biomass hydrolysate on acetic acid extraction in an emulsion liquid membrane system. Under specific operating conditions, more than 99% of acetic acid could be extracted within 5 minutes, and the degrees of extraction of furfural and 5-hydroxymethylfurfural were about 10% and 4%, respectively. The extraction rate of acetic acid was also lower at a higher initial concentration of furfural in the feed phase, which was greater for furfural than 5-hydroxymethylfurfural. Thus, if furfural is first removed from the hydrolysate prior to acetic acid extraction, emulsion liquid membrane would be a more economically efficient way of removing acetic acid.
[References]
  1. Mateoa S, Robertob ICA, Sancheza S, Moya AJ, Ind. Crop. Prod., 49, 196, 2013
  2. Zhu JJ, Zhu YY, Zhang LL, Yong Q, Xu Y, Li X, Lian ZN, Yu SY, Sep. Purif. Technol., 126, 39, 2014
  3. Park JH, Kim JS, Korean Chem. Eng. Res., 54(1), 1, 2016
  4. Lee SC, Park S, Bioresour. Technol., 216, 661, 2016
  5. Um M, Shin G, Lee J, Ind. Crop. Prod., 97, 574, 2017
  6. Chandel AK, Kapoor RK, Singh A, Kuhad RC, Bioresour. Technol., 98(10), 1947, 2007
  7. Lee SC, Sep. Purif. Technol., 118, 540, 2013
  8. Lee SC, Korean Chem. Eng. Res., 53(4), 457, 2015
  9. Lee SC, Bioresour. Technol., 192, 340, 2015
  10. Lee SC, Bioresour. Technol., 245, 116, 2017
  11. Carvalheiro F, Duarte LC, Lopes S, Parajo JC, Pereira H, Girio FM, Process Biochem., 40(3-4), 1215, 2005
  12. Mussatto SI, Santos JC, Roberto IC, J. Chem. Technol. Biotechnol., 79(6), 590, 2004
  13. Persson P, Andersson J, Gorton L, Larsson S, Nilvebrant N, Jonsson LJ, J. Agric. Food Chem., 50, 5318, 2002
  14. Rodrigues RCLB, Felipe MGA, Silva JBAE, Vitolo M, Gomez PV, Brazilian J. Chem. Eng., 18(3), 299, 2001
  15. Villarreal MLM, Prata AMR, Felipe MGA, Silva JBAE, Enzyme Microb. Technol., 40(1), 17, 2006
  16. Al-Mudhaf HF, Hegazi MF, Abu-Shady AI, Sep. Purif. Technol., 27(1), 41, 2002
  17. Cai W, Zhu S, Piao X, J. Chem. Eng. Data, 46, 1472, 2001
  18. Matsumoto M, Otono T, Kondo K, Sep. Purif. Technol., 24(1-2), 337, 2001
  19. Lee SC, Hyun KS, Korean J. Chem. Eng., 30(7), 1454, 2013
  20. Chen S, Mowery RA, Castleberry VA, van Walsum GP, Chambliss CK, J. Chromatogr. A, 1104, 54, 2006
  21. de Mancilha IM, Karim MN, Biotechnol. Prog., 19(6), 1837, 2003
  22. Lim SJ, Lee SC, Korean Chem. Eng. Res., 52(6), 789, 2014
  23. Lee SC, Bioresour. Technol., 169, 692, 2014
  24. Lee SC, Lee WK, J. Chem. Technol. Biotechnol., 55, 251, 1992
  25. Zautsen RRM, Maugeri F, Vaz-Rossell CE, Straathof AJJ, van der Wielen LAM, de Bont JAM, Biotechnol. Bioeng., 102(5), 1354, 2009