Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.5, 607-624, 2018
SAFT 상태 방정식과 회합성 유체 혼합물의 기액 상평형
SAFT Equation of State for Vapor-liquid Phase Equilibria of Associating Fluid Mixtures
SAFT 상태 방정식이 기초하는 TPT이론과 통계역학적 원리를 개괄하고, 회합성 유체 혼합물의 기액 상평형을 예측하는 유용한 도구로 사용될 수 있음을 확인한다. PC-SAFT 상태 방정식의 이론적 구조를 상세히 검토하고, 비극성 혼합물, 극성 혼합물, 회합성 혼합물에 단계적으로 적용하는 과정을 통하여, 상태 방정식의 적용성과 성능을 평가한다. PCSAFT 상태 방정식은 기존의 공학용 상태 방정식과는 대조적으로, 경험적인 이성분 상호작용 매개변수의 사용 없이 다양한 혼합물들의 비이상적 거동을 정확하게 예측할 수 있다. 이는 SAFT 이론이 분자들 사이의 다양한 상호작용을 효과적으로 반영하는 분자 수준의 엄밀한 이론 체계에 기초하기 때문이며, 다성분 혼합물의 복잡한 열역학적인 현상에 대한 응용에서 실질적 이점을 제공한다.
We review SAFT equation of state (EOS) which is based on TPT theory and statistical-mechanical principles, and confirm that it can be used as a useful tool to predict vapor-liquid phase equilibria of associating fluid mixtures. We examine theoretical structure of PC-SAFT EOS in great detail, and then assess the applicability and performance of the EOS while applying it to various mixtures containing nonpolar components, polar components and associating components in a stage-wise manner. In contrast to the conventional engineering EOS, PC-SAFT EOS can accurately predict nonideal behaviors of those mixtures without using semi-empirical binary interaction parameter. This is because the SAFT theory is based on a rigorous theoretical framework at molecular level which effectively accounts for various intermolecular interactions, and it thus provides substantial benefits in applying the SAFT EOS to complex thermodynamic phenomena of multi-component mixtures.
[References]
  1. Sandler SI, Chemical, Biochemical and Engineering Thermodynamics 4th ed., John Wiley & Sons (2006).
  2. Soave G, Chem. Eng. Sci., 27, 1197, 1972
  3. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59, 1976
  4. Wertheim MS, J. Stat. Phys., 35, 19, 1984
  5. Wertheim MS, J. Stat. Phys., 35, 35, 1984
  6. Wertheim MS, J. Stat. Phys., 42, 459, 1986
  7. Wertheim MS, J. Stat. Phys., 42, 477, 1986
  8. Wertheim MS, J. Chem. Phys., 85, 2929, 1986
  9. Wertheim MS, J. Chem. Phys., 87, 7323, 1987
  10. Chapman WG, Jackson G, Gubbins KE, Mol. Phys., 65, 1057, 1988
  11. Chang J, Sandler SI, Chem. Eng. Sci., 49(17), 2777, 1994
  12. Ghonasgi D, Chapman WG, J. Chem. Phys., 100(9), 6633, 1994
  13. Chang JE, Sandler SI, J. Chem. Phys., 102(1), 437, 1995
  14. Chang J, Sandler SI, J. Chem. Phys., 103(8), 3196, 1995
  15. Kalyuzhnyi YV, Cummings PT, J. Chem. Phys., 103(8), 3265, 1995
  16. Chang J, Kim H, J. Chem. Phys., 109(6), 2579, 1998
  17. Stell G, Lin CT, Kalyuzhnyi YV, J. Chem. Phys., 110(11), 5444, 1999
  18. Stell G, Lin CT, Kalyuzhnyi YV, J. Chem. Phys., 110(11), 5458, 1999
  19. Kalyuzhnyi YV, McCabe C, Whitebay E, Cummings PT, J. Chem. Phys., 121(16), 8128, 2004
  20. Chang J, Korean J. Chem. Eng., 31(3), 374, 2014
  21. Chapman WG, Gubbins KE, Jackson G, Radosz M, Fluid Phase Equilib., 52, 31, 1989
  22. Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709, 1990
  23. Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284, 1990
  24. Huang SH, Radosz M, Ind. Eng. Chem. Res., 30, 1994, 1991
  25. Gilvillegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN, J. Chem. Phys., 106(10), 4168, 1997
  26. Blas FJ, Vega LF, Ind. Eng. Chem. Res., 37(2), 660, 1998
  27. Gross J, Sadowski G, Ind. Eng. Chem. Res., 40(4), 1244, 2001
  28. Gross J, Sadowski G, Ind. Eng. Chem. Res., 41(22), 5510, 2002
  29. Yeom MS, Chang J, Kim H, Fluid Phase Equilib., 194, 579, 2002
  30. Lafitte T, Apostolakou A, Avendano C, Galindo A, Adjiman CS, Muller EA, Jackson G, J. Chem. Phys., 139, 154504, 2013
  31. Wei YS, Sadus RJ, AIChE J., 46(1), 169, 2000
  32. Muller EA, Gubbins KE, Ind. Eng. Chem. Res., 40(10), 2193, 2001
  33. Tan SP, Adidharma H, Radosz M, Ind. Eng. Chem. Res., 47(21), 8063, 2008
  34. Chang J, Sandler SI, Mol. Phys., 81, 735, 1994
  35. Carnahan NF, Starling KE, J. Chem. Phys., 51, 635, 1969
  36. McQuarrie DA, Statistical Mechanics, Harper and Row, New York(1976).
  37. Boublik T, J. Chem. Phys., 53, 471, 1970
  38. Mansoori GA, Carnahan NF, Starling KE, Leland TW, J. Chem. Phys., 54, 1523, 1971
  39. Barker JA, Henderson D, J. Chem. Phys., 47, 2856, 1967
  40. Chang J, Sandler SI, Mol. Phys., 81, 745, 1994
  41. Gross J, Sadowski G, Fluid Phase Equilib., 168(2), 183, 2000
  42. Lemmon EW, McLinden MO, Friend DG, Gaithersburg MD, 20899, http://webbook.nist.gov,(retrieved April 10, 2018).
  43. CHERIC Korea Thermophysical Properties Data Bank, https://www.cheric.org/research/kdb.
  44. Jog PK, Chapman WG, Mol. Phys., 97, 307, 1999
  45. Rushbrooke GS, Stell G, Høye JS, Mol. Phys., 26, 1199, 1973
  46. Jog PK, Sauer SG, Blaesing J, Chapman WG, Ind. Eng. Chem. Res., 40(21), 4641, 2001
  47. Sauer SG, Chapman WG, Ind. Eng. Chem. Res., 42(22), 5687, 2003
  48. Dominik A, Chapman WG, Kleiner M, Sadowski G, Ind. Eng. Chem. Res., 44(17), 6928, 2005
  49. Gross J, Vrabec J, AIChE J., 52(3), 1194, 2006
  50. Al-Saifi NM, Hamad EZ, Englezos P, Fluid Phase Equilib., 271(1-2), 82, 2008
  51. Wolbach JP, Sandler SI, Ind. Eng. Chem. Res., 37(8), 2917, 1998
  52. Kleiner M, Sadowski G, J. Phys. Chem. C, 111, 15544, 2007
  53. Flory PJ, Principles of Polymer Chemistry, Cornell University Press(1953).