Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.4, 585-591, 2018
미세액적 유동반응기 공정에서 연속제조된 나노구조 SiO 2 :Zn 원환형 입자의 특성
Characteristics of Nano-structured SiO2:Zn Hollow Powders Prepared in the Micro Drop Fluidized Reactor (MDFR) Process
미세액적 유동반응기 공정에서 제조된 나노구조 SiO2:Zn 원환형 입자의 특성을 밴드갭 에너지와 표면 반응성의 관점에서 고찰하였다. SiO2:Zn 원환형 입자를 단일 공정에서 연속적이며 합리적인 생산 효율로 첨가제인 THAM(tris(hydroxymethyl)-aminomethane)과 도핑되는 Zn2+ 이온의 농도 변화에 따라 성공적으로 제조할 수 있었다. 그리고 Zn2+ 이온의 도핑은 Si4+ 이온의 conduction band 보다 에너지 레벨이 낮은 Zn2+ 이온의 acceptor level을 형성함으로써 SiO2:Zn 원환형 입자의 밴드갭 에너지를 줄일 수 있었다. 또한, 입자의 원환형 구조는 SiO2:Zn 입자의 밴드갭 에너지를 감소시키는데 기여하였다. 따라서 Zn2+ 이온이 도핑된 SiO2:Zn 원환형 입자는 표면에 SiO-H의 형성과 산소 결함의 생성으로 표면 반응성을 증대시킬 것으로 사료되었다.
Characteristics of nano-structured SiO2:Zn hollow powders prepared in the micro drop fluidized reactor process were investigated with respect to bandgap energy and surface activity. The SiO2:Zn hollow powders were successfully prepared continuously in the one step process with reasonable production efficiency, with varying the amount of THAM (tris(hydroxymethyl)-aminomethane) additive and concentration of Zn2+ ions. The doping of Zn2+ ions into SiO2 lattice led to the reduction of bandgap energy by forming the acceptor level of Zn2+ below the conduction band of Si4+ ions. The hollow shape also contributed to reduce the bandgap energy of SiO2:Zn powders. The doping of Zn2+ ions into SiO2 hollow powders could enhance the surface activity by forming SiO-H stretching and oxygen vacancies at the surface of SiO2:Zn powders.
[References]
  1. Dingemans G, van Helvoirt CAA, Pierreux D, Keuning W, Kessels WMM, J. Electrochem. Soc., 159(3), H277, 2012
  2. Xu F, Tan W, Liu H, Li D, Li Y, Wang M, Water Sci. Technol., 74, 1680, 2016
  3. Hu W, Wu X, Li Z, Yang J, Phys. Chem. Chem. Phys., 15, 5733, 2013
  4. Cho GS, Lee DH, Kim DS, Lim HM, Kim C, Lee SH, Korean Chem. Eng. Res., 51(5), 622, 2013
  5. Xia YN, Gates B, Yin YD, Lu Y, Adv. Mater., 12(10), 693, 2000
  6. Park HY, Hwang K, Kim JH, Lee JY, Appl. Chem. Eng., 26(5), 549, 2015
  7. Jeon SJ, Song SN, Kang SJ, Kim HT, Korean Chem. Eng. Res., 53(3), 357, 2015
  8. Feifel SC, Lisdat F, J. Nanobiotechnol., 9, 59, 2011
  9. He PL, Hu NF, Rusling JF, Langmuir, 20(3), 722, 2004
  10. Hilliard LR, Zhao X, Tan W, Anal. Chim. Acta, 470, 51, 2002
  11. Sun Y, Yan F, Yang W, Zhao S, Yang W, Sun C, Anal. Bioanal. Chem., 387, 1565, 2007
  12. Nam JM, Thaxton C S, Mirkin CA, Science, 301, 1884, 2003
  13. Jung HJ, Kim YB, Chang YH, Korean Chem. Eng. Res., 46(4), 722, 2008
  14. Lee SH, Yang SW, Lim DH, Yoo DJ, Lee CK, Kang GM, Kang Y, Korean Chem. Eng. Res., 53(5), 597, 2015
  15. Yoo DJ, Lim DH, Kang Y, Lee CG, Kang GM, Mater. Chem. Phys., 183, 398, 2016
  16. Kang Y, Lee CG, Kang GM, Lim DH, Yoo DJ, Korea Patent 10-1757414; 10-1727052(2017).
  17. Yoo DJ, Lim DH, Kang Y, Lee CG, Kang GM, J. Chem. Eng. Jpn., 50(1), 21, 2017
  18. Yang SW, Lim DH, Yoo DJ, Kang Y, Lee CG, Kang GM, Adv. Powder Technol., 29(3), 499, 2018
  19. Reddy CV, Babu B, Shim J, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 223, 131, 2017
  20. Othmen WBH, Sdiri N, Elhouichet H, Ferid M, Mater. Sci. Semicond. Process, 52, 46, 2016
  21. Kang HW, Lim SN, Park SB, Int. J. Hydrog. Energy, 37(14), 10539, 2012
  22. Dujardin R, Delorme F, Pintault B, Autret C, Monot-Laffez I, Giovannelli F, Mater. Lett., 187, 151, 2017
  23. Shannon RD, Acta. Cryst. A, 32, 751, 1976