Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.4, 577-584, 2018
목질 섬유판 제조에 있어 도계부산물인 닭털의 목섬유 부분적 대체화 탐색
Investigating the Partial Substitution of Chicken Feather for Wood Fiber in the Production of Wood-based Fiberboard
본 연구는 목질계 섬유판 제조에 있어 목섬유에 대한 도계부산물인 닭털의 부분적 대체화 가능성을 검토하기 위하여 수행하였다. 닭털은 주로 케라틴계 단백질로 구성되어 있으며, 외형적으로 목섬유와 큰 차이는 없었다. 닭털의 전처리 방법에 따른 포름알데히드 흡착능을 비교한 결과, 닭털을 고온/고압에서 처리하고 분쇄한 우모분에서 가장 높았다. 한편 일반 가위로 절단한 닭털과 이를 가정용 믹서로 고해시킨 닭털의 폼알데히드 흡착량을 dinitrophenylhydrazine 법으로 측정한 결과 차이는 없었다. 닭털, 고해 닭털, 우모분을 각각 목섬유의 전건무게를 기준으로 5 wt%로 혼합하여 제조한 중밀도섬유판(MDF)의 물성과 폼알데히드방출량은 닭털의 전처리 조건에 영향을 받지 않았다. 그러나 이 측정치를 목섬유만으로 제조한 MDF와 비교하였을 때, 두께팽윤율과 폼알데히드방출량은 크게 개선되었다. 따라서 현재생산 현장에서 적용되고 있는 요소수지를 이용한 MDF 제조에 있어 목섬유와 함께 일정한 양의 닭털, 고해 닭털 또는 우모분을 첨가할 경우 치수안전성과 폼알데히드방출량이 개선된 MDF의 제조가 가능할 것으로 예상된다. 그러나 MDF제조에 있어 닭털의 사용은 현재 상황에서 목섬유와 비교하여 원료 확보의 어려움과 높은 단가로 경제성이 낮은 것으로 조사되었다. 경제성 향상을 위하여 중소형 도계장에서 발생하는 닭털을 이용하거나, 동물성 사료의 금지에 대한 대비책 및 인플루엔자 감염 조류에 대한 환경적 처리 방안으로 닭털의 섬유판 원료에 대한 부분적 대체화 기술은 향후 사용 가능성이 충분할 것으로 판단된다.
This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a partial substitute of wood fiber in the production of wood-based fiberboard. Keratin-type protein constituted the majority of CF, and its appearance did not differ from that of wood fiber. When the formaldehyde (HCHO) adsorptivities of CF compared by its pretreatment type, feather meal (FM), which was pretreated CF with high temperature and pressure and then grounded, showed the highest HCHO adsorptivity. In addition, there was no difference between the adsorbed HCHO amounts, which was measured by dinitrophenylhydrazine method, of scissors-chopped CF and CF beated with an electrical blender. Mechanical properties and HCHO emission of medium-density fiberboards (MDF), which were fabricated with wood fiber and 5 wt% CF, beated CF or FM based on the oven-dried weight of wood fiber, were not influenced by the pretreatment type of CF. However, when the values compared with those of MDF made with just wood fiber, thickness swelling and HCHO emission of the MDF were improved greatly with the addition of CF, beated CF or FM. Based on the results, it might be possible to produce MDF with improved dimensional stability and low HCHO emission if CF, beated CF or FM is added partially as a substitute of wood fiber in the manufacturing process of MDF produced with the conventional urea-formaldehyde resin of E1 grade. However, the use of CF or FM in the production of MDF has a low economic feasibility at the current situation due to the securing difficulty and high cost of CF. In order to enhance the economic feasibility, it requires to use CF produced at small to medium-sized chicken meat plants. More importantly, it is considered that the technology developed from this research has a great potential to make provision for the prohibition of animal-based feed and to dispose environmentally avian influenza-infected poultry.
[References]
  1. Korea Wood Panel Association, September, Seoul(2015).
  2. Ministry of Environment, Policy for managing the indoor air-quality of public facilities, ME No. 6911, Sejong (2003).
  3. International Agency for Research on Cancer, IARC classifies formaldehyde as carcinogenic to humans, http://www.iarc.fr/en/mediacentre/pr/2004/pr153.html (2004).
  4. Korean Agency for Technology and Standards, Safety standards for the voluntary safety control of manufacturing products. KATS No. 2015-0123, Eumseong (2015).
  5. Yang I, Kuo ML, Myers DJ, J. American Oil Chemists’ Society, 83(3), 231, 2006
  6. Yang I, Kuo ML, Myers DJ, Pu AB, J. Wood Science, 52(6), 503, 2006
  7. Yang I, Ahn S, Choi IG, Kim HY, Oh S, J. Ind. Eng. Chem., 15(3), 398, 2009
  8. Yang I, Han GS, Ahn SH, Choi IG, Kim YH, Oh SC, J. Adhes., 90(4), 279, 2014
  9. Christiansen AW, Gillespie RH, For. Prod. J., 36(7/8), 20, 1986
  10. Oh Y, Seller T, Kim MG, Strickland RC, For. Prod. J., 44(2), 25, 1994
  11. Olivares M, Aceituno H, Neiman G, Rivera E, Seller T, For. Prod. J., 45(1), 63, 1995
  12. Barbosa AP, Mano EB, Andrade CT, For. Prod. J., 50(9), 89, 2000
  13. Pizzi A, Scharfetter HO, J. Appl. Polym. Sci., 22(6), 1745, 1978
  14. Rho J, Lee J, J. Adhes., 12(4), 125, 2011
  15. Que Z, Furuno T, Katoh S, Nishino Y, Building and Environment, 42(3), 1242, 2007
  16. Lee SM, Park JY, Park SB, Park BD, Research report of Korea Forest Research Institute, Seoul, 10-20(2010).
  17. Kim KW, Lee SN, Baek BS, Lee BH, Kim HJ, Choi YM, Jang SW, Adhesion and interface, 9(1), 28, 2008
  18. Ahn SH, J. Korean Wood Sci. Technol., 43(3), 390, 2015
  19. Park BD, Kang EC, Park JY, J. Forest Science, 67, 112, 2004
  20. Woo BJ, Kim HJ, Korea Rural Economic Institute, Seoul, Republic of Korea(2015).
  21. Lee JG, Lee SM, J. Aquaculture, 11(4), 421, 1998
  22. Jiang Z, Qin D, Hse C, Kuo ML, Luo Z, Wang G, Yu Y, J. Wood Chemistry Technology, 28, 240, 2008
  23. Park DH, Yang I, Choi WS, Oh SC, Ahn DU, Han GS, J. Korean Wood Sci. Technol., 45(1), 126, 2017
  24. Yang I, Park DH, Choi WS, Oh SC, Ahn DU, Han GS, Korean Chem. Eng. Res., 55(3), 385, 2017
  25. Yang I, Park DH, Choi WS, Ahn DU, Oh SC, Han GS, J. of Adhesion, online(2018).
  26. Kota KP, Shaik SS, Kota RK, Karlapudi AP, Int. J. Rev. Res., 27(2), 373, 2014
  27. Oladele IO, Omotoyimbo JA, Ayemidejor SH, Int. J. Sci. Technol., 3(1), 66, 2014
  28. Gagan B, Singh VK, Patil PP, Shweta R, Int. J. Waste Resour., 6(3), 1, 2016
  29. Canavate J, Aymerich J, Garrido N, Colom X, Macanas J, Molins G, Alvarez MD, Carrillo F, Composite Materials, 50(12), 1671, 2016
  30. Manpreet KM, Univ. of Alberta, Edmonton, Alberta(2017).
  31. Bardelline J, “Researchers Turn Chicken Feathers Into Fiber,”https://www.greenbiz.com/news/2009/05/08/researchers-turn-chickenfeathers-fiber(2009).
  32. Shi B, Shannon TG, Pelky E, Bioresources, 5(3), 1425, 2010
  33. Chakraborty S, Chowdhury S, Saha PD, Korean J. Chem. Eng., 29(11), 1567, 2012
  34. Winandy JE, Muehl JH, Glaeser JA, Schmidt W, J. Natural Fibers, 4(1), 35, 2007
  35. Taghiyari HR, Bari E, Schmidt O, Ghanbary MAT, Karimi A, Tahir P, Int. Biodeterior. Biodegrad., 90, 93, 2014
  36. Taghiyari HR, Mohammad-Panah B, Morrell J, Maderas Cienc Tecnol., 18(1), 157, 2016
  37. Association of Official Analytical Chemists, Analytical methods for chemical composition, 15th ed., Academic Press, Inc., Arlington, TX(1990).
  38. National Institute of Forest Science, Determination of formaldehyde emission for wood-based panels, NIFOS, Seoul, Republic of Korea(2014).
  39. Yi GH, Yun IC, Kim YK, Kim CC, Choi GJ, Lee TS, J. Korean Soc. Water Wastewater, 27(6), 827, 2013
  40. Korean Agency for Technology and Standards, Fiberboards, KSC, KS F 3200, Eumseong, Chungbuk, Republic of Korea(2011).
  41. Kim YB, Lee KS, Lee NH, J. Korean Anim. Sci., 40(1), 103, 1998
  42. Nam KC, “Current Status and Prospect of Chicken Industry,” Personal communication(2016).
  43. Ahn HJ, “Spread of Avian Influenza and Cost Required for Solving the Disease,” Korean Newspaper for farmers and fishermen, http://www.agrinet.co.kr/news/articleView.html?idxno=149582 (2016).
  44. http://ec.europa.eu/food/food/biosafety/tse_bse/docs/roadmap_2_en.pdf.
  45. https://www.daera-ni.gov.uk/articles/bse-feed-controls.
  46. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?CFRPart=589&showFR=1.