Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.4, 568-576, 2018
박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구
Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design
폐감귤박으로 제조한 활성탄(WCAC, waste citrus peel based activated carbon)에 의한 항생제 trimethoprim (TMP) 의 흡착 특성을 조사하기 위해 반응표면법(RSM, response surface methodology)을 사용하여 TMP 흡착에 대한 운전인자들의 영향을 조사하였다. 농도(X1: 50-150 mg/L), pH (X2: 4-10), 온도(X3: 293-323 K), 흡착제 투여량(X4: 0.05-0.15 g)의 4가지 입력 파라미터를 가진 4-요인 Box-Behnken 실험 설계에 따라 회분식 실험을 수행하고, 얻어진 실험 결과를 다중 회귀 분석으로 2차 다항식에 맞추고 통계적 방법을 사용하여 검토하였다. 독립 변수 및 변수들 간의 교호 작용의 유의성은 ANOVA 및 t-검정 통계기법으로 평가하였으며, 통계적 결과는 TMP 농도가 다른 요인들에 비하여 가장 많은 영향을 미치는 운전인자라는 것을 보여 주었다. 흡착공정은 유사 2차 속도식에 잘 부합하였으며, 등온흡착평형관계는 Langmuir 식이 Freundlich 식 보다 잘 부합하였다. Langmuir 등온식으로 부터 계산한 WCAC에 의한 TMP의 최대 흡착량은 293 K에서 144.9 mg/g이었다.
In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box.Behnken experimental design with four input parameters : concentration (X1: 50-150 mg/L), pH (X2: 4-10), temperature (X3: 293-323 K), adsorbent dose (X4: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.
[References]
  1. Jo JH, Lim DH, Seo GT, J. Kor. Soc. Environ. Eng., 35(7), 457, 2013
  2. Dominguez-Vargas JR, Carrillo-Perez V, Gonzalez-Montero T, Cuerda-Correa EM, Water Air Soil Pollut., 223, 4577, 2012
  3. Pedrouzo M, Borrull F, Pocurull E, Marce RM, Water Air Soil Pollut., 217, 267, 2011
  4. Fukahori S, Fujiwara T, Ito R, Funamizu N, Desalination, 275(1-3), 237, 2011
  5. Dardouri S, Sghaier J, Korean J. Chem. Eng., 34(4), 1037, 2017
  6. Snyder S, Westerhoff P, Yoon Y, Sedlak DL, Environ. Eng. Sci., 20, 449, 2003
  7. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N, Environ. Sci. Technol., 36(17), 3855, 2002
  8. Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S, Water Res., 43, 2419, 2009
  9. Chayid MA, Ahmed MA, J. Environ. Chem. Eng., 3, 1592, 2015
  10. Mendez-Diaz JD, Prados-Joya G, Rivera-Utrilla J, Leyva-Ramos R, Sanchez-Polo M, Ferro-Garcia MA, Medellin-Castillo NA, J. Colloid Interface Sci., 345(2), 481, 2010
  11. Ocampo-Perez R, Orellana-Garcia F, Sanchez-Polo M, Rivera-Utrilla J, Velo-Gala I, Lopez-Ramon MV, Alvarez-Merino MA, J. Colloid Interface Sci., 401, 116, 2013
  12. Caliskan E, Gokturk S, Sep. Sci. Technol., 45(2), 244, 2010
  13. Aksu Z, Tunc O, Process Biochem., 40(2), 831, 2005
  14. Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF, Bioresour. Technol., 99(10), 4515, 2008
  15. Xu X, Cao X, Zhao L, Chemosphere, 92(8), 955, 2013
  16. Baccar R, Sarra M, Bouzid J, Feki M, Blanquez P, Chem. Eng. J., 211-212, 310, 2012
  17. Flores-Cano JV, Sanchez-Polo M, Messoud J, Ocampo-Perez R, Rivera-Utrilla J, J. Environ. Manage., 169, 116, 2016
  18. Wan SG, Hua ZL, Sun L, Bai X, Liang L, Process Saf. Environ. Protect., 104, 422, 2016
  19. Kam SK, KanG KH, Lee MG, Appl. Chem. Eng., 28(6), 649, 2017
  20. Lee CH, Kam SK, Lee MG, Korean Chem. Eng. Res., 55(5), 723, 2017
  21. Kam SK, Lee MG, Appl. Chem. Eng., 29(3), 270, 2018
  22. Alam Z, Muyibi SA, Toramae J, J. Environ. Sci., 19, 674, 2007
  23. Saadat S, Karimi-Jashni A, Chem. Eng. J., 173(3), 743, 2011
  24. Kim DS, Park YS, J. Environ. Sci. Int., 19(7), 889, 2010
  25. Park HE, Row KH, Appl. Chem. Eng., 24(3), 299, 2013
  26. Lee SE, Kim JK, Han SK, Chae JS, Lee KD, Koo KK, Appl. Chem. Eng., 26(6), 730, 2015
  27. Kam SK, Hyun SS, Lee MG, J. Environ. Sci. Intern., 20, 1337, 2011
  28. Lagergren S, Kunglia Svenska Vetenskapsa-kademiens, 24, 1, 1898
  29. Ho YS, McKay G, Can. J. Chem. Eng., 76(4), 822, 1998
  30. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  31. Freundlich HMF, J. Phys. Chem., 57, 385, 1906
  32. Kim SH, Shon HK, Ngo HH, J. Ind. Eng. Chem., 16(3), 344, 2010