Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.4, 547-554, 2018
Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses
Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials’ grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures (300 °C, 330 °C, and 350 °C) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were 330 °C-30 minutes and 300 °C-45 minutes, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.
[References]
  1. Fryda L, Daza C, Pels J, Janssen A, Zwart R, Biomass Bioenerg., 65, 28, 2014
  2. Darvell LI, Jones JM, Gudka B, Baxter XC, Saddawi A, Williams A, Malmgren A, Fuel, 89(10), 2881, 2010
  3. Balat M, Energy Sources, 29(7), 581, 2007
  4. Arias BR, Pevida CG, Fermoso JD, Plaza MG, Rubiera FG, Piz-Martinez JJ, Fuel. Process. Technol., 89(2), 169, 2008
  5. Mei Y, Che Q, Yang Q, Draper C, Yang H, Zhang S, Chen H, Ind. Crop. Prod., 92, 26, 2016
  6. Kim YH, Na BI, Ahn BJ, Lee HW, Lee JW, Korean J. Chem. Eng., 32(8), 1547, 2015
  7. Park DH, Ahn BJ, Kim ST, Lee JW, Han GS, Yang I, Korean Chem. Eng. Res., 53(2), 224, 2015
  8. Commandre JM, Leboeuf A, Environ. Prog. Sustain. Energy, 34, 1180, 2015
  9. Lee MS, Jeong G, Jung SJ, Lee KY, Korean Chem. Eng. Res., 51(4), 465, 2013
  10. Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD, Ind. Biotechnol., 7(5), 384, 2011
  11. Khalsa JHA, Leistner D, Weller N, Darvell LI, Dooley B, Energies., 9(10), 794, 2016
  12. Hower JC, Energeia, 1(6), 1, 1990
  13. Almeida G, Brito JO, Perre P, Bioresour. Technol., 101(24), 9778, 2010
  14. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781, 2007
  15. Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Noor IM, Energy Conv. Manag., 76, 1073, 2013
  16. Sulaiman SA, Anas MI, Trends. Appl. Sci. Res., 7(3), 248, 2012
  17. Correia R, Goncalves M, Nobre C, Mendes B, Bioresour. Technol., 223, 210, 2017
  18. Bridgeman TG, Jones JM, Williams A, Waldron DJ, Fuel, 89(12), 3911, 2010
  19. Chen DY, Zheng ZC, Fu KX, Zeng Z, Wang JJ, Lu MT, Fuel, 159, 27, 2015
  20. Bridgeman TG, Jones JM, Shield I, Williams PT, Fuel, 87(6), 844, 2008
  21. Strandberg M, Olofsson I, Pommer L, Wiklund-Lindstrom S, Aberg K, Nordin A, Fuel Process. Technol., 134, 387, 2015