Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.4, 479-495, 2018
다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs)거동 해석 및 영향평가
Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbons (PAHs)
본 연구에서는 자동차배출화학물질 중 발암성 및 돌연변이 유발 물질인 PAHs (Polycyclic Aromatic Hydrocarbons)의 다매체 간 거동 모델링, 농도 분포, 그리고 영향평가를 수행하였다. S시의 차량 통계와 PAHs의 배출계수를 이용하여PAHs의 배출량을 산정하였고, 도시의 불투수면적에서 대기-토양의 물질이동 제한조건을 바탕으로 다매체 퓨가시티 모델링을 수행하였다. 다매체 퓨가시티 모델을 이용하여 정상상태에서 환경 매체내 PAHs의 농도 분포를 예측하고(LevelIII), 각 모델 변수에 대하여 몬테카를로 민감도 분석을 바탕으로 비정상상태에서 환경 매체내 PAHs 잔류량 및 매체 간물질 이동으로 인한 매체별 농도분포와 위해성 평가를 수행하였다(Level IV). S시의 경우 배출된 PAHs중 Fluoranthene 이 네 가지 환경 매체(대기, 수계, 토양, 침전물)에서 모두 가장 높은 잔류농도(60.0%, 53.5%, 32.0%, 33.6%)를 보였으며 침전물에서 가장 높은 농도(80%이상)로 잔류하였다. 34년 동안 S시 환경 매체 중의 PAHs 농도 변화 분석 결과, 모든 환경 매체에서 PAHs 잔류량은 1983년부터 2005년까지 증가하였고, 이후 2016년까지 감소한 것을 확인하였으며, 각각 환경매체에서 트럭을 포함한 중량차량(Heavy Duty Vehicles, HDVs) 배출가스의 PAHs 농도 기여도가 큰 것으로 나타났다. 매체 별 PAHs 농도는 토양과 수계에서 34년간 기준치보다 작은 값을 보였으나, 대기중 PAHs농도는 권고치를 초과하는 농도값을 보였다. 본 연구 결과를 통해 지난 30여년 동안 대도시 자동차 배출 화학물질인 PAHs의 환경 중 거동 및 위해성을 평가를 통하여 PAH물질 관리 및 규제의 필요성을 제시하고, 다양한 환경 매체 내 독성화학물질 관리 및 모니터링에 기여할 수 있을 것으로 기대된다.
This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs’ Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.
[References]
  1. Lee HS, Yoo JW, Korean J. Chem. Eng., 28(4), 1065, 2011
  2. Haritash AK, Kaushik CP, J. Hazard. Mater., 169(1-3), 1, 2009
  3. Maliszewska-Kordybach B, Bioavailability of organic xenobiotics in the environment: Practical consequences for the environment, Springer Netherlands, Dordrecht, pp. 3-34 (1999).
  4. Park JS, Yoon SK, Bae WK, Anal. Sci. Technol., 23, 9, 2010
  5. Besombes JL, Patissier AMO, Marchand N, Chevron N, Stoklov M, Masclet P, Atmos. Environ., 35, 12, 2001
  6. Ramirez N, Cuadras A, Rovira E, Marce RM, Borrull F, Environmental Health Perspectives, 119, 1110, 2011
  7. Marchand N, Besombes JL, Chevron N, Mascelt P, Aymoz G, Jaffrezo JL, Atmospheric Chemistry and Physics, 4, 15, 2004
  8. Marr LC, Hammond SK, Kirchstetter TW, Hering SV, Harely RA, Miguel AH, Harle RA, Environ. Sci. Technol., 33, 9, 1999
  9. Zhang XL, Tao S, Liu WX, Yang Y, Zuo Q, Liu SZ, Environ. Sci. Technol., 39, 9109, 2005
  10. Li Q, Kim M, Liu Y, Yoo C, Science of The Total Environment, 618, 430(2018).
  11. Niederer M, Maschka-Selig A, Hohl C, Environ. Sci. Pollut. Res., 2, 83, 1995
  12. Pandey PK, Patel KS, Lenicek J, Environmental Monitoring and Assessment, 59, 287, 1999
  13. Lee SC, Ho KF, Chan LY, Zielinska B, Chow JC, Atmos. Environ., 35, 5949, 2001
  14. Li Q, Zhu T, Qiu X, Hu J, Vighi M, Ecotox. Environ. Safe., 63, 196, 2006
  15. Maddalena RL, McKone TE, Layton DW, Hsieh DPH, Chemosphere, 30, 869, 1995
  16. Fingas MF, The Handbook of Hazardous Materials Spills Technology, McGraw-Hill (2002).
  17. Huang L, Batterman SA, Environ. Sci. Technol., 48, 13817, 2014
  18. Ntakirutimana T, Guo JS, Gao X, Gong DC, Research Journal of Environ. Earth Sci., 4, 731, 2012
  19. Kim MK, Bae HK, Song SH, Koo HJ, Kim HM, Choi KS, Jeon SH, Lee MS, J. Korean Soc. Environ. Eng., 27, 9, 2005
  20. Mackay D, Multimedia Environmental Models: The Fugacity Approach, Second Edition, CRC Press (2001).
  21. Donald Mackay SP, Environ. Sci. Technol., 25, 10, 1991
  22. Mackay D, Shiu WY, Ma KC, Illustrated Handbook of Physical-chemical Properties of Environmental Fate for Organic Chemicals, Taylor & Francis(1997).
  23. Mackay ADGD, Paterson S, Kicsi G, Cowan CE, Kane DM, Environ. Toxicol. Chem., 15, 11, 1996
  24. Mackay D, Guardo DA, Paterson S, Cowan CE, Environ. Toxicol. Chem., 15, 1627, 1996
  25. Ao J, Chen J, Tian F, Cai X, Chemosphere, 74, 370, 2009
  26. Hamby DM, Environmental Monitoring Assessment, 32, 135, 1994
  27. Helton JC, Iman RL, Johnson JD, Leigh CD, Nuclear Sci. Eng., 102, 22, 1989
  28. Mukaka MM, J. Medical Association Malawi, 24, 3, 2012
  29. Younshik C, Taijin S, Jeongwan K, J. Korean Soc. Civil Eng., 31, 375, 2011
  30. Diamond ML, Priemer DA, Law NL, Chemosphere, 44, 1655, 2001
  31. Kim J, Powell DE, Hughes L, Mackay D, Chemosphere, 93, 819, 2013
  32. MacLeod M, Fraser AJ, Mackay D, Environ. Toxicol. Chem., 21, 700, 2002
  33. Chang KF, Fang GC, Chen JC, Wu YS, Environ. Pollut., 142, 388, 2006
  34. Park S, Kim S, Lee Y, J. Korean Soc. Transportation, 19, 35, 2001
  35. Lee WB, Kim J, J. Korean Soc. Environ. Eng., 39, 118, 2017
  36. Nisbet ICT, LaGoy PK, Regul. Toxicol. Pharmacol., 16, 290, 1992
  37. Kwon JH, Lee DS, Korean J. Environ. Toxicology, 17, 225, 1986
  38. Juhasz AL, Naidu R, Int. Biodeterior. Biodegrad., 45, 57, 2000
  39. Kim KH, Jahan SA, Kabir E, Brown RJC, Environ. Int., 60, 71, 2013
  40. “Risk assessment of polycyclic aromatic hydrocarbons (pahs)”, National Institute of Food and Drug Safety Evaluation (2016).
  41. Ravindra K, Sokhi R, Van Grieken R, Atmos. Environ., 42, 2895, 2008
  42. Dae-Seon K, National Institute of Environmental Research, p. 126 (2003).
  43. Lee JY, Ewha Womans University, p. 2386133 bytes (2006).
  44. Hwan KD, Gon O, J. Environ. Sci., 14, 71, 2005
  45. Gong, S. Y., “A Study on the Health Impact and Management Policy of pm2.5 in korea i,” Korea Environment Institute, p. 190.
  46. Seoul statistics, http://stat.seoul.go.kr/jsp/WWS8/WWSDS8111.jsp?cot=017 (accessed 2017).
  47. Choi JY, Cho SH, Ministry of Environment Korea, Korea, p. 369(2013).
  48. Hughes L, Mackay D, Powell DE, Kim J, Chemosphere, 87, 118, 2012