Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.4, 453-460, 2018
반응표면분석법을 이용한 갈조류, 미역의 전처리 인자 영향 파악 및 젖산
Validation of Factors Effect on Pretreatment of Brown Algae, Undaria, Using Response Surface Methodology and Prospect of Lactic Acid Production
원유 가격의 상승과 지구온난화로 인하여 재생 가능한 바이오매스를 이용하여 산업적으로 중요한 화합물을 생산하는 연구가 주목받고 있다. 특히, 3세대 바이오매스인 해조류는 비식량 자원, 높은 생산 수율, 온실가스 저감 등 장점을 가지고 있기에 연구 되어야 할 필요가 있다. 본 연구에서는 고체분석 방법을 이용하여 4종의 해조류 중에 미역이 가장 많은 당류를 함유하는 것을 확인하였다. 미역의 효과적인 전처리를 위해 반응표면분석법을 이용하였으며 이를 통해 고체의 부하 및 촉매의 농도 증가가 총 당의 추출률과 관계 있음을 확인하였다. 4종의 락토바실러스 균주에서 미역의 전처리물을 이용하여 젖산 생산 수행하였으며 L. alimentarius와 L. brevis가 해조류 이용한 젖산생산에 적합한 균주임을 확인하였다.
Owing to rising oil prices and anthropogenic global warming, focused attempts are being made toward production of industrially important compounds by using renewable biomass. In this context, algal biomass as third-generation biomass is important because it doesn’t compatible with food resource, has high yield, and helps abate greenhouse gases. Here, we investigate whether Undaria has the highest sugar content, which would make it the most suitable biomass for lactic acid production among the four algal biomasses tested. For effective pretreatment of Undaria, the response surface methodology was used. The amount of solid loaded and catalyst concentration were related to the extraction rate of total sugar. Lactic acid was produced by pretreatment of Undaria by using four Lactobacilli, and L. alimentarius and L. brevis were found to be suitable for lactic acid production.
[References]
  1. Ullah K, Ahmad M, Sofia, Sharma VK, Lu P, Harvey A, Zafar M, Sultana S, Anyanw CN, PNSC International., 24, 329, 2014
  2. Cho JH, Lee HS, KEI Working paper (korea environment institute) (2011).
  3. Milledge JJ, Nielsen BV, Bailey D, Reviews in Environmental Science and Bio/Technology., 15, 67, 2016
  4. El Gamal AA, Biological importance of marine algae, SPJ., 18, Issue 1, 1-25(2010).
  5. Intan, Tawakkal SMA, Cran MJ, Miltz J, Stephen W, Bigger, A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging, JFS., Vol. 79(2014).
  6. Berlowska J, Binczarski M, Dudkiewicz M, Kalinowska H, Witonska IA, Stanishevsky AV, RSC Advances., 5, 2299, 2015
  7. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A, Biomacromolecules, 12(3), 523, 2011
  8. Jafarei P, Tajabadi M, AJMR., 5(24), 4033, 2011
  9. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, LAP., 1617(2008).
  10. Hujanen M, Linko S, Linko YY, Leisola M, AMB., 56, 126, 2001
  11. Abdel-Rahman MA, Tashiro Y, Sonomoto K, JB., 156(4), 286, 2011
  12. Tedesco S, Marrero BT, Olabi AG, “Optimization of Mechanical Pre-treatment of Laminariaceae spp. Biomass-derived Biogas,” RE., 42, 527-534(2014).
  13. Jang SS, AJB., 11, 1953, 2012
  14. Kim JS, Korean Chem. Eng. Res., 51(4), 438, 2013
  15. Jonsson LJ, Martin C, BITE., 199, 103, 2016
  16. Kim SB, Lee JH, Yang X, Lee J, Kim SW, Korean J. Chem. Eng., 32(11), 2280, 2015
  17. Jeong GT, Park DH, KBB., 341-346 (2011).
  18. Edwin C, van der Pol, Vaessen E, Weusthuis RA, Eggink G, Bioresource Technology., 297-304(2016).
  19. Axelsson L, Ahrne S, Springer Netherlands. Dordrecht, 367-388(2000).
  20. Ganzle MG, COFS., 2, 106, 2015
  21. Smetankova J, Hladikova Z, Valach F, Zimanova M, Kohajdova Z, Greif G, Greifova M, Acta Chimica Slovaca., 5, 204, 2015
  22. Cai Y, Ohmomo S, Ogawa M, Kumai S, JAM., 83(3), 307, 1997