Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.3, 430-434, 2018
잔류 메틸렌 클로라이드 제거를 위한 마이크로웨이브를 이용한 파클리탁셀건조에서 확산계수 및 물질전달계수 추정
Estimation of Diffusion Coefficient and Mass Transfer Coefficient in Microwave-Assisted Drying of Paclitaxel for Removal of Residual Methylene Chloride
본 연구에서는 잔류 메틸렌 클로라이드 제거를 위한 마이크로웨이브를 이용한 파클리탁셀 건조에서 유효확산계수 및 물질전달계수를 조사하였다. 모든 온도(35, 45, 55 °C)에서 건조 초기에 많은 양의 잔류 메틸렌 클로라이드가 제거 되었으며 건조 온도가 증가할수록 건조 효율은 증가하였다. 건조 온도가 증가할수록 파클리탁셀의 유효확산계수(1.299× 10-13~2.571 × 10-13 m2/s)와 물질전달계수(1.625 × 10-11~4.857 × 10-11 m/s)는 증가하였다. 또한 낮은 Biot 수 (0.0100~0.0151)로부터 건조의 진행이 주로 파클리탁셀의 외부확산에 의해 조절됨을 알 수 있었다.
In this study, an effective diffusion coefficient and mass transfer coefficient were investigated in microwaveassisted drying of paclitaxel for removal of residual methylene chloride. At all the temperatures (35, 45, and 55 °C), a large amount of the residual methylene chloride was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. The effective diffusion coefficient (1.299 × 10-13 ~ 2.571 × 10-13 m2/s) and mass transfer coefficient (1.625 × 10-11~4.857 × 10-11 m/s) increased with increasing drying temperature. The small Biot number (0.0100~0.0151) indicated that the process of mass transfer was externally controlled.
[References]
  1. Kim JH, Korean J. Biotechnol. Bioeng., 21(1), 1, 2006
  2. International Conference on Harmonisation, “Guidance on Impurities: Residual Solvents,” Fed. Regist., 62, 67377-67388(1997).
  3. Kim JH, Park HB, Gi US, Kang IS, Choi HK, Hong SS, Korean J. Biotechnol. Bioeng., 16(3), 233, 2001
  4. Gi US, Min B, Lee JH, Kim JH, Korean J. Chem. Eng., 21(4), 816, 2004
  5. Lee JY, Kim JH, Process Biochem., 48(3), 545, 2013
  6. Li Y, Lei Y, Zhang LB, Peng JH, Li CL, Trans. Nonferrous Met. Soc. China, 21(1), 202, 2011
  7. Kim HS, Chae YB, Jung SB, Jang YN, J. Miner. Soc. Korea, 21, 193, 2008
  8. Kassem AS, Shokr AZ, EI-Mahdy AR, Aboukarima AM, Hamed EY, J. Saudi Soc. Agr. Sci., 10, 33, 2011
  9. Funebo T, Ohlsson T, J. Food Eng., 38(3), 353, 1998
  10. Cheung YC, Wu JY, Biochem. Eng. J., 79(3), 214, 2013
  11. Cheung YC, Siu KC, Wu JY, Food Bioprocess Technol., 6(10), 2659, 2013
  12. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1958, 2004
  13. Ha GS, Kim JH, Korean Chem. Eng. Res., 54(2), 229, 2016
  14. Kim HS, Kim JH, Process Biochem., 23, 163, 2017
  15. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K, Chem. Mater., 11(4), 1110, 1999
  16. Darvishi H, Asl AR, Asghari A, Najafi G, Gazori HA, J. Food Process Technol., 4(3), 1, 2013
  17. Crank J, “The Mathematics of Diffusion,” 2nd Edition, Clarendon Press, Oxford, UK(1975).
  18. Dincer I, Hussain MM, Int. J. Heat Mass Transf., 45(15), 3065, 2002
  19. Sahin AZ, Dincer I, Yilbas BS, Hussain NM, Int. J. Heat Mass Transf., 45(8), 1757, 2002
  20. Prasad BE, Pandey KK, Eur. J. Wood Prod., 70(1-3), 353, 2012
  21. Ozkan IA, Akbudak B, Akbudak N, J. Food Eng., 78(2), 577, 2007
  22. Lee H, Han CS, MS Thesis, Chungbuk National University, Cheongju, Korea (2009).
  23. Sharma GP, Prasad S, J. Food Eng., 65(4), 609, 2004
  24. Mirzaee E, Rafiee S, Keyhani A, Emam-Djomeh Z, Res. Agr. Eng., 55(3), 114, 2009
  25. Guine RPF, Barroca MJ, Silva V, Int. J. Food Prop., 16(2), 251, 2013
  26. Sander A, Kardum JP, Skansi D, Chem. Biochem. Eng. Q., 15(3), 131, 2001