Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.3, 421-429, 2018
디젤탈황 단위공정의 CFD 모델링을 포함한 연료전지 시스템 공정설계 및 최적화
Process Simulation and Optimization of Fuel Cell System including CFD Modeling of Diesel Desulfurizer Unit Process
본 연구에서는 100 kW급 연료전지 시스템의 운영을 위한 공정 및 CFD 모델링을 진행하였다. 공정 모델링을 통해 연료전지 각 단위 공정에 유입되는 유량을 도출하였으며 수소로 전환되지 않는 디젤의 환류량을 도출하였다. 디젤의 환류를 고려한 새로운 유입 유량 조건을 이용해 CFD 해석을 진행한 결과, 환류 디젤이 없는 것으로 가정한 이전 연구 결과에 비해 더 짧은 유입시간과 비슷한 시간의 처리시간을 가지는 이점이 있음을 확인하였다. 6기의 탈황 반응기를 이용해 100 kW급 연료전지를 가동시키는데 필요한 TSA 탈황 시스템 구성을 완료하였으며 전체 TSA 공정 운영을 위한 운용 방안을 도출하였다. 반응기 사이의 열 전달 해석을 통해 저온의 탈황공정과 고온의 재생공정 간의 열 간섭이 크지 않음을 확인하였다. 본 연구결과는 연료전지 시스템의 효율화에 기여할 것이며, 도출된 탈황모듈의 설계는 연료 전지 시스템뿐만 아니라 청정 석유화학산업의 기초가 될 것으로 기대된다.
We performed process and CFD simulations of a 100 kW fuel cell system. By process simulation, we derived the input flow rate of each unit process and the recycle diesel flow rate. Through CFD simulation considering the recycle diesel flow, more efficient operational condition was found. Using 6 desulfurize reactors, a TSA process for a 100 kW fuel cell system was successfully constructed. Heat interference between reactors was found to be negligible. These results will contribute to increasing the efficiency of fuel cell system and the developed desulfurizing module design will contribute to the clean petrochemical technology as well as fuel cell systems.
[References]
  1. Eyring V, Kohler HW, Van Aardenne J, Lauer A, J. Geophys. Res., 110, D17305, 2005
  2. Goldsworthy L, Austl. & NZ Mar. LJ, 24, 21, 2010
  3. Ma H, Steernberg K, Riera-Palou X, Tait N, Transportation Research Part D: Transport and Environment, 17(4), 301, 2012
  4. Buhaug Ø, Corbett JJ, Endresen Ø, Eyring V, Faber J, et al., “Second IMO GHG Study 2009,” International Maritime Organization (IMO), London, UK(2009).
  5. Wan Z, Zhu M, Chen S, Sperling D, Nature, 530, 7590, 2016
  6. Ovruma E, Dimopoulosb G, Appl. Therm. Eng., 35, 15, 2012
  7. Leo TJ, Durango JA, Navarro E, Energy, 35(2), 1164, 2010
  8. Aicher T, Lenz B, Gschnell F, Groos U, Federici F, Caprile L, Parodi L, J. Power Sources, 154(2), 503, 2006
  9. Nam JG, J. Korean Soc. Mar. Eng., 37, 855, 2013
  10. Lin LG, Zhang YZ, Zhang HY, Lu FW, J. Colloid Interface Sci., 360(2), 753, 2011
  11. Kwon SG, Liu J, Im DJ, Clean Technol., 21(4), 229, 2015
  12. Choi CY, Kwon SG, Liu J, Im DJ, Clean Technol., 23(2), 140, 2017
  13. Ho HP, Kim WH, Lee SY, Son HR, Kim NH, Kim JK, Park JY, Woo HC, Clean Technol., 20(1), 88, 2014
  14. Hodges SC, Johnson GC, Soil. Sci. Soc. Am. J., 51(2), 323, 1987
  15. Choi CY, Im DJ, Korean Chem. Eng. Res., 55(6), 874, 2017
  16. Permatasari A, Fasahati P, Ryu JH, Liu JJ, Korean J. Chem. Eng., 33(12), 3381, 2016
  17. Nam JG, J. Korean Soc. Mar. Eng., 37(8), 855, 2013
  18. Lin LG, Zhang YZ, Zhang HY, Lu FW, J. Colloid Interface Sci., 360(2), 753, 2011
  19. Boon J, van Dijk E, de Munck S, van den Brink R, J. Power Sources, 196(14), 5928, 2011
  20. Cutillo A, Specchia S, Antonini M, Saracco G, Specchia V, J. Power Sources, 154(2), 379, 2006
  21. Lindstrom B, Karlsson JAJ, Ekdunge P, De Verdier L, Haggendal B, Dawody J, Nilsson M, Pettersson LJ, Int. J. Hydrog. Energy, 34(8), 3367, 2009
  22. Ersoz A, Olgun H, Ozdogan S, Energy, 31(10-11), 1490, 2006
  23. Ahmed S, Kumar R, Krumpelt M, Fuel Cells Bulletin, 2(12), 4, 1999
  24. Ersoz A, Olgun H, Ozdogan S, J. Power Sources, 154(1), 67, 2006
  25. http://www.jmprotech.com/htc-johnson-matthey.
  26. Ko DH, Kim M, Moon I, Choi DK, Chem. Eng. Sci., 57(1), 179, 2002
  27. Lei M, Vallieres C, Grevillot G, Latifi MA, Ind. Eng. Chem. Res., 52(22), 7526, 2013