Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.3, 335-342, 2018
HAZOP 기법을 이용한 이산화탄소 분리 공정 위험성 평가 및 안전도 향상 전략
HAZOP Study for Risk Assessment and Safety Improvement Strategies of CO2 Separation Process
화학 및 전력 산업 관련 에너지 및 환경 현안에 대응하기 위한 다양한 기술이 개발 및 실증화 단계에 있으며, 특히 아민을 이용한 이산화탄소(CO2) 분리 공정은 CO2 포집 및 격리(CCS; carbon capture and sequestration) 설비의 대표적인 핵심 기술이다. 본 연구에서는 상용화 중인 아민 기반 CO2 분리 공정 분석 및 검토를 통하여 주요 위험 요소를 규명하고 안전성 향상을 위한 전략을 제시한다. 대상 공정에 대한 위험성 평가를 하기 위해 HAZOP 기법을 이용하였으며, 위험 등급 표(Risk matrix)을 이용하여 규명된 위험 요소들의 상대적 순위를 평가함으로써 주요 위험 요소를 완화시키거나 제거할 수 있는 설비 및 운전 상의 전략을 제시한다. 위험성 평가 결과로 운전자의 오작동, 부식에 의한 파열, 배관 및 펌프의 고장 등이 주요 위험 요소로 규명 되었고, 완화 전략으로 누출/화재/폭발에 대한 시나리오 규명, 운 전자의 관리 및 교육, PSV 등 안전 밸브 설치 등 장치 변경 및 유지 보수 계획 등을 제시하였다.
Various technologies to cope with the energy and environmental issues related to the chemical and electric power industry are in development and demonstration stage. Especially, the absorption process of carbon dioxide (CO2) using amine solution is a key technology of the CO2 capture and storage (CCS). In this study, we identify the major risk factors and suggest strategies for safety improvement by analyzing and assessing commercial the amine-based CO2 separation process. HAZOP method was used to assess the risk for the process. We provide facilities and operational strategies to mitigate or eliminate major risk factors by assessing the relative ranks of identified risk factors using a risk matrix.
[References]
  1. Velmurugan V, Srithar K, Renew. Sust. Energ. Rev., 15(2), 1294, 2011
  2. Jin HG, Gao L, Han W, Hong H, Energy, 35(11), 4499, 2010
  3. Wu ZC, Zhu Y, Huang WY, Zhang CW, Li T, Zhang YM, Li AF, Bioresour. Technol., 110, 496, 2012
  4. Wang L, Liu Z, Li P, Yu JG, Rodrigues AE, Chem. Eng. J., 197, 151, 2012
  5. Mulgundmath VP, Tezel FH, Saatcioglu T, Golden TC, Can. J. Chem. Eng., 90(3), 730, 2012
  6. He B, Song Q, Yao Q, Meng Z, Chen C, Korean J. Chem. Eng., 24(3), 503, 2007
  7. Raynal L, Bouillon PA, Gomez A, Broutin P, Chem. Eng. J., 171(3), 742, 2011
  8. Yang HJ, Fan SS, Lang XM, Wang YH, Nie JH, Chin. J. Chem. Eng., 19(4), 615, 2011
  9. Ho MT, Allinson GW, Wiley DE, Ind. Eng. Chem. Res., 47(14), 4883, 2008
  10. Hussain A, Hagg MB, J. Membr. Sci., 359(1-2), 140, 2010
  11. Oh SY, Binns M, Cho H, Kim JK, Appl. Energy, 169, 353, 2016
  12. IEA C, “Capture and Storage-A Key Carbon Abatement Option,”International Energy Agency, OECD, Paris, (2008).
  13. Rochelle GT, Science, 325, 1652, 2009
  14. Badr S, Frutiger J, Hungerbuehler K, Papadokonstantakis S, Int. J. Greenhouse Gas Control, 56, 202, 2017
  15. Karl M, Wright RF, Berglen TF, Denby B, Int. J. Greenhouse Gas Control, 5(3), 439, 2011
  16. Koornneef J, Ramirez A, Turkenburg W, Faaij A, Prog. Energy Combust. Sci., 38(1), 62, 2012
  17. Krzemien A, Wieckol-Ryk A, Smolinski A, Koteras A, Wieclaw-Solny L, J. Loss Prev. Process Ind., 43, 189, 2016
  18. Krzemien A, Wieckol-Ryk A, Duda A, Koteras A, J. Sustainable Mining, 12(4), 18, 2013
  19. AICHE Guidelines for Hazard Evaluation Procedures: Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, 1985.
  20. Korea Gas Safety Corporation, “Qualitative Risk Assessment,” Korea Association of Professional Safety Engineers, Seoul, 1999.
  21. Freeman RA, Process Saf. Prog., 10(3), 155, 1991
  22. CCPS, “Guideline for Process Equipment Reliability Data with Data Tables,” AIChE, New York (1989).
  23. Guide K, “Risk and HAZOP,” (2006).