Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.3, 320-326, 2018
리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능
Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries
본 연구에서는 리튬이온전지 음극활물질로 Graphite의 전기화학적 특성을 향상시키기 위하여 Graphite/Silicon/Carbon (G/Si/C) 복합소재를 제조하였다. 제조된 G/Si/C 합성물은 XRD, TGA, SEM을 사용하여 물성을 분석하였다. 또한 LiPF6 (EC:DMC:EMC=1:1:1 vol%) 전해액에서 리튬이차전지의 충·방전 사이클, 율속, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. G/Si/C 전극을 사용한 리튬이온전지는 Graphite 전극을 사용한 전지보다 우수한 특성을 나타내었으며 Silicon 함량이 늘어날수록 용량은 높아지나 안정성이 저하됨을 확인하였다. 또한 25 μm 이하의 Silicon을 사용하였을 때 용량과 안정성 모두 향상되는 것을 나타내었다. Silicon (≤25 μm) 10 wt%인 경우 G/Si/C 복합소재는 495 mAh/g의 초기 방전 용량, 89%의 용량 보존율과 2 C/0.1 C에서 80%의 속도 특성을 보였다.
In this study, Graphite/Silicon/Carbon (G/Si/C) composites were synthesized to improve the electrochemical properties of Graphite as an anode material of lithium ion battery. The prepared G/Si/C composites were analyzed by XRD, TGA and SEM. Also the electrochemical performances of G/Si/C composites as the anode were performed by constant current charge/discharge, rate performance, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved inorganic solvents (EC:DMC:EMC=1:1:1 vol%). Lithium ion battery using G/Si/C electrode showed better characteristics than graphite electrode. It was confirmed that as the silicon content increased, the capacity increased but the capacity retention ratio decreased. Also, it was shown that both the capacity and the rate performances were improved when using the Silicon (≤25 μm). It is found that in the case of 10 wt% of Silicon (≤25 μm), G/Si/C composites have the initial discharge capacity of 495 mAh/g, the capacity retention ratio of 89% and the retention rate capability of 80% in 2 C/0.1 C.
[References]
  1. Kim JS, Pfleging W, Kohler R, Seifert HJ, Kim TY, Byun D, Jung HG, Choi WC, Lee JK, J. Power Sources, 279, 13, 2015
  2. Chen HD, Wang ZL, Hou XH, Fu LJ, Wang SF, Hu XQ, Qin HQ, Wu YP, Ru Q, Liu X, Hu SJ, Electrochim. Acta, 249, 113, 2017
  3. Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH, Carbon, 94, 432, 2015
  4. Hwang JU, Lee JD, Korean Chem. Eng. Res., 55(3), 307, 2017
  5. Thackeray MM, Wolverton C, Isaacs ED, Energy Environ. Sci., 5, 7854, 2012
  6. Ohta N, Nagaoka K, Hoshi K, Bitoh S, Inagaki M, J. Power Sources, 194(2), 985, 2009
  7. Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M, J. Power Sources, 194(1), 486, 2009
  8. Bourderau S, Brousse T, Schleich DM, J. Power Sources, 81-82, 233, 1999
  9. Jo YN, Kim Y, Kim JS, Song JH, Kim KJ, Kwag CY, Lee DJ, Park CW, Kim YJ, J. Power Sources, 195(18), 6031, 2010
  10. Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK, Electrochem. Commun., 6, 689, 2004
  11. Lee JH, Kim WJ, Kim JY, Lim SH, Lee SM, J. Power Sources, 176(1), 353, 2008
  12. Lai J, Guo H, Wang Z, Li X, Zhang X, Wu F, Yue P, J. Alloy. Compd., 530, 30, 2012
  13. Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16, 2016
  14. Su M, Wang Z, Guo H, Li X, Huang X, Gan L, Adv. Polym. Technol., 24, 921, 2013
  15. Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25(6), 592, 2014
  16. Wang H, Xie J, Zhang S, Cao G, Zhao X, RSC Adv., 6, 69882, 2016
  17. Gan L, Guo HJ, Wang ZX, Li XH, Peng WJ, Wang JX, Huang SL, Su MR, Electrochim. Acta, 104, 117, 2013
  18. Jung MJ, Lee JD, Appl. Chem. Eng., 26, 80, 2016
  19. Wu J, Tu WM, Zhang Y, Guo BL, Li SS, Zhang Y, Wang YD, Pan M, Powder Technol., 311, 200, 2017
  20. Yang Y, Wang Z, Zhou Y, Guo H, Li X, Mater. Lett., 199, 84, 2017