Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.3, 303-308, 2018
Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성
Synthesis and Electrochemical Characteristics of Silicon/Carbon Anode Composite with Binders and Additives
본 연구에서는 리튬이차전지 음극활물질인 Silicon/Carbon (Si/C) 복합소재를 제조하여 바인더 및 첨가제가 전지성능에 미치는 영향을 조사하였다. Si/C 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. Si/C 음극소재는 충·방전, 순환전압전류, 임피던스 테스트를 통해 전기화학적 성능을 분석하였다. PAA 바인더를 이용한 Si/C 전지의 용량은 1,899 mAh/g으로 다른 바인더를 사용한 합성물보다 우수하였으며, 40 사이클 동안 92%에 달하는 높은 용량 보존율을 나타내었다. 또한, VC 첨가제를 사용한 전지의 경우 3,049 mAh/g의 높은 초기용량을 나타내며, 실리콘 표면에 보호막을 형성해 초기 비가역용량을 감소시켜줌을 알 수 있었다.
Silicon/Carbon (Si/C) composite as anode materials for lithium-ion batteries was synthesized to find the effect of binders and an electrolyte additive. Si/C composites were prepared by two step method, including magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical performances of Si/C composites were investigated by charge/discharge, cyclic voltammetry and impedance tests. The anode electrode of Si/C composite with PAA binder appeared better capacity (1,899 mAh/g) and the capacity retention ratio (92%) than that of other composition coin cells during 40 cycles. Then, Vinylene carbonate (VC) was tested as an electrolyte additive. The influence of this additive on the behavior of Si/C anodes was very positive (3,049 mAh/g), since the VC additive is formed passivation films on Si/C surfaces and suppresses irreversible changes.
[References]
  1. Zhang WJ, J. Power Sources, 196(1), 13, 2011
  2. Hwa Y, Kim WS, Yu BC, Kim JH, Hong SH, Sohn HJ, J. Power Sources, 252, 144, 2014
  3. Rahmat N, Abdullah AZ, Mohamed AR, Am. J. Appl. Sci., 7, 1579, 2010
  4. Wu L, Zhou H, Yang J, Zhou X, Ren Y, Nie Y, Chen S, J. Alloy. Compd., 716, 204, 2017
  5. Wang H, Wu P, Shi HM, Tang WZ, Tang YW, Zhou YM, She PL, Lu TH, J. Power Sources, 274, 951, 2015
  6. Lee HY, Lee JD, Korean Chem. Eng. Res., 54(4), 459, 2016
  7. Tian H, Tan H, Xin X, WC, Han W, Nano Energy., 11, 490, 2015
  8. Wang J, Zhao H, He J, Wang C, Wang J, J. Power Sources, 196, 481, 2011
  9. Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26(1), 80, 2015
  10. Zhang M, Hou X, Wang J, Li M, Hu S, Shao Z, Liu X, J. Alloy. Compd., 588, 206, 2014
  11. Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26(5), 543, 2015
  12. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K, J. Phys. Chem. C, 115, 13487, 2011
  13. Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ, Electrochim. Acta, 136, 112, 2014
  14. Chen LB, Wang K, Xie XH, Xie JY, J. Power Sources, 174(2), 538, 2007
  15. Choi NS, Yew KH, Lee KY, Sung M, Kim H, Kim SS, J. Power Sources, 161(2), 1254, 2006
  16. Han GB, Ryou MH, Cho KY, Lee YM, Park JK, J. Power Sources, 195(11), 3709, 2010
  17. Yue L, Zhang WH, Yang JF, Zhang LZ, Electrochim. Acta, 125, 206, 2014
  18. Wang YG, Zhang FY, Wang YQ, Ren JW, Li CL, Liu XH, Guo Y, Guo YL, Lu GZ, Mater. Chem. Phys., 115(2-3), 649, 2009
  19. Madec L, Petibon R, Tasaki K, Xia J, Sun JP, Hilla IG, Dahn JR, Phys. Chem. Chem. Phys., 17, 27062, 2015
  20. Wu X, Wang Z, Chen L, Huang X, Electrochem. Commun., 5, 935, 2003
  21. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U, Electrochim. Acta, 47(9), 1423, 2002