Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.3, 297-302, 2018
메탄의 완전산화 반응을 위한 중공사형 페롭스카이트 촉매 제조
Preparation of the Hollow Fiber Type Perovskite Catalyst for Methane Complete Oxidation
선행 연구를 통해서 우수한 메탄 완전 산화 특성을 보인 La0.1Sr0.9Co0.2Fe0.8O3-δ (LSCF1928) 페롭스카이트 분말 촉매로 비드형과 중공사형 촉매를 제조하였다. 중공사형 촉매는 내부가 비어있는 원기둥 형태이며, 상전이법을 통해 기공을 형성시킬 수 있어 비표면적을 획기적으로 향상시킬 수 있다. Methyl Cellulose (MC)를 넣어 제조한 비드형 촉매의 경우 MC에서 배출되는 CO2와 촉매 성분인 Sr이 반응하여 원래 촉매 조성이었던 LSCF1928 조성 외에 SrCO3가 생성되었다. 중공사형 촉매의 경우 불순물 없이 단일상의 페롭스카이트 구조를 얻었다. 700~900 °C에서 하소한 중공사형 촉매는 손가락구조-스펀지구조-손가락구조의 기공 형태를 보였으며, 모두 475 °C에서 메탄의 완전 산화 반응을 통해 99.9% 산소 전화율을 달성하였다. 중공사형 촉매의 기공을 제어하기 위하여 에어 갭과 방사압력 조건을 변경하였다. 2 cm 에어 갭, 7 bar의 방사 압력으로 제조한 중공사형 촉매가 가장 우수한 촉매 성능을 보였으며, 425 °C, 450 °C 및 475 °C에서 각각 70.65%, 93.01%, 99.99% 이상의 산소 전화율을 달성하였다.
Bead type and hollow fiber type catalyst (HFC, Hollow Fiber type Catalyst) was prepared by La0.1Sr0.9 Co0.2Fe0.8O3-δ (LSCF1928) perovskite powder catalyst which showed excellent methane complete oxidation characteristics through previous studies. The HFC have a cylindrical shape with an empty interior, and pores can be formed through Phase inversion method so the specific surface area can be remarkably improved. In the case of the bead type catalyst prepared by adding Methyl Cellulose (MC), SrCO3 was produced in addition to the original catalyst composition of LSCF1928 due to the reaction of CO2 emitted from MC and Sr of the catalyst. In the case of the HFC, a single phase perovskite structure was obtained without impurities. The HFC calcined at 700~900 °C showed pore structure of finger-sponge-finger structure, and 99.9% oxygen conversion rate was achieved through complete oxidation of methane at 475°C. Air gap and spinning pressure condition were changed to control the HFC pore. 2 cm air gap and 7 bar spinning pressure showed the best catalytic performance and achieved oxygen conversion rates of more than 70.65%, 93.01%, and 99.99% at 425 °C, 450 °C and 475 °C, respectively.
[References]
  1. Hansen JE, Sir JH, J. Atmospheric Chem., 30(3), 409, 1998
  2. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ, Nature, 408(6809), 184, 2000
  3. Luo C, Zheng Y, Xu Y, Ding H, Zheng C, Qin C, Feng B, Korean J. Chem. Eng., 32(5), 934, 2015
  4. Yeon SH, Seo BK, Park YI, Lee GH, Korean Chem. Eng. Res., 39(6), 709, 2001
  5. Hogan KB, Hoffman JS, Thompson AM, Nature, 354, 181, 1991
  6. Lantela J, Rasi S, Lehtinen J, Rintala J, Appl. Energy, 92, 307, 2012
  7. Bandyopadhyay A, Clean Tec. Env. Policy, 13(2), 269, 2011
  8. Fang JJ, Yang N, Cen DY, Shao LM, He PJ, Waste Manage., 32, 1401, 2012
  9. El-Fadel M, Findikakis AN, Leckie J, J. Environ. Manage., 50(1), 1, 1997
  10. Ryckebosch E, Drouillon M, Veruaeren H, Biomass Bioenerg., 35(5), 1633, 2011
  11. Tanaka H, Kaino R, Okumura K, Kizuka T, Nakagawa Y, Tomishige K, Appl. Catal. A: Gen., 378(2), 175, 2010
  12. Marchetti L, Forni L, Appl. Catal. B: Environ., 15(3-4), 179, 1998
  13. Kim JR, Kim EJ, Magnone E, Park JH, J. Ind. Eng. Chem., 47, 214, 2017