Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.6, 861-867, 2017
도핑효과에 따른 리튬이차전지용 NCA 양극활물질의 전기화학적 특성 향상
Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect
니켈 함량이 높은 리튬이차전지용 NCA 양극소재의 용량 및 수명특성을 향상시키기 위하여 붕소와 코발트를 상업용Li1.06Ni0.91Co0.08Al0.01O2 (NCA)에 도핑하여 리튬이차전지의 양극소재로 사용하였다. 상업용 NCA 양극소재는 약 5 μm와 12 μm 크기의 2차 입자들이 혼합되어 있고 붕소와 코발트 도핑후 입자크기는 조금 감소되었다. 붕소와 코발트를 도핑한 NCA-B와 NCA-Co의 초기 방전용량은 각각 214 mAh/g과 200 mAh/g으로 도핑하지 않은 NCA에 비해 높게 나타났으며, 특히 NCA-Co는 20번째의 방전용량이 157mAh/g으로 가장 우수한 방전용량특성을 나타내었다. 이는 코발트를 도핑함으로써 c축 방향으로의 결정이 성장되어 리튬이온의 확산이 용이하기 때문이다.
In order to improve the capacity and cycling stability of Ni-rich NCA cathode materials for lithium ion batteries, the boron and cobalt were doped in commercial Li1.06Ni0.91Co0.08Al0.01O2 (NCA) powders. Commercial NCA particles are mixed composites such as secondary particles of about 5 μm and 12 μm, and the particle size was decreased by doping boron and cobalt. The initial discharge capacities of the boron and cobalt doped NCA-B and NCA-Co were found to be 214 mAh/g and 200 mAh/g, respectively, which are higher values than that of the raw NCA cathode material. In particular, NCA-Co exhibits the best discharge capacity of 157 mAh/g after 20 cycles, which is probably due to the enhanced diffusion of lithium ion by crystal growth along with the c-axis direction.
[References]
  1. Park H, Yeom DH, Kim J, Lee JK, Korean J. Chem. Eng., 32(1), 178, 2015
  2. Vu DL, Lee JW, Korean J. Chem. Eng., 33(2), 514, 2016
  3. Kannan AM, Manthiram A, J. Electrochem. Soc., 150(3), A349, 2003
  4. Omanda H, Brousse T, Marhic C, Schleich DM, J. Electrochem. Soc., 151(6), A922, 2004
  5. Delmas C, Croguennec L, Mater. Res. Soc. Bull., 27(8), 608, 2002
  6. Majumder SB, Nieto S, Katiyar RS, J. Power Sources, 154(1), 262, 2006
  7. Jin EM, Lee GE, Na BK, Jeong SM, Korean Chem. Eng. Res., 55(2), 163, 2017
  8. Kondo H, Takeuchi Y, Sasaki T, Kawauchi S, Itou Y, Hiruta O, Okuda C, Yonemura M, Kamiyama T, Ukyo Y, J. Power Sources, 174(2), 1131, 2007
  9. Xie H, Du K, Hu G, Peng Z, Cao Y, J. Phys. Chem., 120(6), 3235, 2016
  10. Lai YQ, Xu M, Zhang ZA, Gao CH, Wang P, Yu ZY, J. Power Sources, 309, 20, 2016
  11. Liu J, Wang S, Ding Z, Zhou R, Xia Q, Zhang J, Chen L, Wei W, Wang P, ACS Appl. Mater. Interfaces, 8(28), 18008, 2016
  12. Li BA, Yan HJ, Ma J, Yu PR, Xia DG, Huang WF, Chu WS, Wu ZY, Adv. Funct. Mater., 24(32), 5112, 2014
  13. Xie H, Hu G, Du K, Peng Z, Cao Y, J. Power Sources, 666, 84, 2016
  14. Hu GR, Liu WM, Peng ZD, Du K, Cao YB, J. Power Sources, 198, 258, 2012
  15. Dahn JR, Sacken UV, Michal CA, Solid State Ion., 44(1), 87, 1990
  16. Reimers JN, Rossen E, Jones CD, Dahn JR, Solid State Ion., 61(4), 335, 1993
  17. Wu K, Wang F, Gao L, Li MR, Xiao L, Zhao L, Hu S, Wang X, Xu Z, Wu Q, Electrochim. Acta, 75(4), 393, 2010
  18. Ju JH, Rye KS, J. Alloy. Compd., 509(30), 7985, 2011
  19. Park TJ, Lim JB, Son JT, Bull. Korean Chem. Soc., 35(2), 357, 2014
  20. Liu W, Hu G, Du K, Peng Z, Cao Y, Surf. Coat. Technol., 216, 267, 2013