Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.6, 791-797, 2017
PEO-PPO-PEO 블록 공중합체를 이용한 PDMS의 친수성 표면 개질 방법
Surface Modification of PDMS for Hydrophilic and Antifouling Surface Using PEO-PPO-PEO Block Copolymer
본 연구에서는 Poly (dimethylsiloxane) (PDMS)의 높은 소수성과 생체분자들의 비특이적 흡착 문제를 해결하기 위해 PEO-PPO-PEO 블록 공중합체의 포매(embeddeing) 방식을 이용하여 손쉬운 표면 개질 및 이의 최적화 조건을 조사 하였다. 친수성 표면 개질의 특성은 PDMS 내에 포매된 블록 공중합체의 농도, 수침(water-soaking), 및 소수성 표면으로 회복 시간 등의 영향을 평가하였다. 개질된 PDMS 표면은 알부민 단백질(2 mg/ml)까지 단백질의 비특이적 결합 방지 특성을 보였으며, 또한 O/W (Oil-in-Water) 에멀젼을 쉽게 형성할 수 있었다.
In this study, we optimized a method of PEO-PPO-PEO block copolymer embedding, for solving non-specific protein and biomolecular adsorption and high hydrophobicic surface property, which is widely known as problems of poly (dimethylsiloxane) (PDMS) that has frequently been used in basic biological and its applied research. We assessed its surface modification by controlling the concentration of embedded block copolymer, water-soaking time, and recovery time as variables by contact angle measurements. In order to evaluate its antifouling ability, adsorption of FITC-BSA molecules was quantified. Furthermore, we generated oil-in-water (O/W) emulsion as a proof-of-concept experiment to confirm that the optimized surface modification works properly.
[References]
  1. Hillborg H, Gedde UW, Ieee T. Dielect. El. In., 6(5), 703, 1999
  2. McDonald JC, Whitesides GM, Accounts Chem. Res., 35(7), 491, 2002
  3. Sia SK, Whitesides GM, Electroanalysis, 24, 3563, 2003
  4. Lee D, Kim YT, Lee JW, Kim DH, Seo TS, Korean J. Chem. Eng., 33(9), 2644, 2016
  5. Singh R, Lee HJ, Singh AK, Kim DP, Korean J. Chem. Eng., 33(8), 2253, 2016
  6. Lee Y, Jung I, Na J, Park S, Kshetrimayum KS, Han C, Korean Chem. Eng. Res., 53(6), 818, 2015
  7. Dahlin AP, Bergstrom SK, Andren PE, Markides KE, Bergquist J, Anal. Chem., 77, 5356, 2005
  8. Jeong SG, Kim J, Jin SH, Park KS, Lee CS, Korean J. Chem. Eng., 33(10), 2761, 2016
  9. Sung YJ, Kwak HS, Choi HI, Kim JYH, Sim SJ, Korean Chem. Eng. Res., 55(1), 80, 2017
  10. Lee S, Jeong W, Beebe DJ, Lab Chip, 3(3), 164, 2003
  11. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR, Science, 288(5463), 113, 2000
  12. Faid K, Voicu R, Bani-Yaghoub M, Tremblay R, Mealing G, Py C, Barjovanu R, Biomed. Microdevices, 7(3), 179, 2005
  13. Russell MT, Pingree LSC, Hersam MC, Marks TJ, Langmuir, 22(15), 6712, 2006
  14. Kim GY, Jeong HH, Lee CS, Roh C, Korean Chem. Eng. Res., 54(2), 223, 2016
  15. Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD, Lab Chip, 9(11), 1850, 2009
  16. Cho SH, Chen CH, Tsai FS, Godin JM, Lo YH, Lab Chip, 10(12), 1567, 2010
  17. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR, Nat. Biotechnol., 17, 1109, 1999
  18. Karir T, Hassan PA, Kulshreshtha SK, Samuel G, Sivaprasad N, Meera V, Anal. Chem., 78(11), 3577, 2006
  19. Toepke MW, Beebe DJ, Lab Chip, 6(12), 1484, 2006
  20. Kim P, Lee SE, Jung HS, Lee HY, Kawai T, Suh KY, Lab Chip, 6(1), 54, 2006
  21. Lee S, Voros J, Langmuir, 21(25), 11957, 2005
  22. Kovach KM, Capadona JR, Sen Gupta A, Potkay JA, J. Biomed. Mater. Res., 102(12), 4195, 2014
  23. Zhang HB, Chiao M, J. Med. Biol. Eng., 35(2), 143, 2015
  24. Xu JJ, Gleason KK, Chem. Mater., 22(5), 1732, 2010
  25. Yang R, Gleason KK, Langmuir, 28(33), 12266, 2012
  26. Huang B, Wu HK, Kim S, Kobilka BK, Zare RN, Lab Chip, 6(3), 369, 2006
  27. Wu ZG, Hjort K, Lab Chip, 9(11), 1500, 2009
  28. Zhou JW, Khodakov DA, Ellis AV, Voelcker NH, Electrophoresis, 33(1), 89, 2012
  29. Kim J, Chaudhury MK, Owen MJ, J. Colloid Interface Sci., 226(2), 231, 2000
  30. Hillborg H, Sandelin M, Gedde UW, Polymer, 42(17), 7349, 2001
  31. Fritz JL, Owen MJ, J. Adhes., 54(1-2), 33, 1995
  32. Kim J, Chaudhury MK, Owen MJ, Orbeck T, J. Colloid Interface Sci., 244(1), 200, 2001
  33. Dong BY, Manolache S, Wong ACL, Denes FS, Polym. Bull., 66(4), 517, 2011