Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.5, 723-730, 2017
반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석
Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach
폐감귤박으로 제조한 활성탄(WCAC)에 의한 2,4-디클로로페놀(2,4-DCP) 흡착에서 온도, 초기농도, 접촉시간 및 흡착제 투여량과 같은 운전변수의 영향을 조사하기 위해 회분식 실험 및 반응표면분석법(Response Surface Methodology: RSM)을 적용하였다. 2,4-DCP 흡착부터 도출된 회귀식은 반응변수의 함수로 나타낼 수 있었다. 이 모델의 적합성은 응답에 대한 실험값과 예측값 간의 상관관계에 의해 평가되었다. R2 값은 0.9921로서 높은 상관성을 가지며, 회귀 모델에 의해 대부분의 데이터 변동을 설명할 수 있었다. 독립변수 및 그 상호작용의 유의성은 분산분석(ANOVA)과 t-검정통계 기법으로 평가하였다. 이들 결과는 사용된 모델이 응답변수를 유의미하게 잘 부합되며, 응답과 독립 변수 간의 관계를 적합하게 잘 설명한다는 것을 보여 주었다. 흡착 속도 및 등온 실험결과는 각각 유사 2차 속도식 및 Langmuir 등온 모델에 의해 잘 설명될 수 있었다. Langmuir 등온 모델로부터 계산된 WCAC에 의한 2,4-DCP의 최대 흡착량은 345.49 mg/g이었다. 흡착과정에서 막확산과 입자내부확산이 동시에 일어나는 것을 흡착 메커니즘 연구로부터 확인하였다. 열역학적 파라미터는 WCAC에서 2,4-DCP의 흡착 반응이 흡열반응이고 자발적인 과정임을 나타내었다.
The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4- dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of R2 (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4- DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.
[References]
  1. Rappe C, “In the Handbook of Environmental Chemistry: Anthropogenic Compounds,” O. Huntzinger, Ed.: Springer-Verlag: Berlin, 3, Part A(1980).
  2. Ryu J, Kim HG, Won SH, Hwang SM, Kim SM, Kim NK, Lee YC, J. Korean Ind. Eng. Chem., 14(5), 650, 2003
  3. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere, 58, 1049, 2005
  4. Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V, Waste Manage., 22, 543, 2002
  5. Eom SY, Ryu SK, Korean Chem. Eng. Res., 39(1), 54, 2001
  6. Graham N, Chu W, Lau C, Chemosphere, 51, 237, 2003
  7. Klumpp E, Contreras-Ortega C, Klahre P, Tino FJ, Yapar S, Portillo C, Stegen S, Queirolo F, Schwuger MJ, Colloids Surf. A: Physicochem. Eng. Asp., 230, 111, 2003
  8. Rzeszutek K, Chow A, Talanta, 46, 507, 1998
  9. Das S, Banthia AK, Adhikari B, Chem. Eng. J., 138(1-3), 215, 2008
  10. Goncharuk VV, Kucheruk DD, Kochkodan VM, Badekha VP, Desalination, 143(1), 45, 2002
  11. Rodgers JD, Jedral W, Bunce NJ, Environ. Sci. Technol., 33, 1453, 1999
  12. Guo ZF, Ma RX, Li GJ, Chem. Eng. J., 119(1), 55, 2006
  13. Gallizia I, McClean S, Banat IM, J. Chem. Technol. Biotechnol., 78(9), 959, 2003
  14. Wang CC, Lee CM, Kuan CH, Chemosphere, 41, 447, 2000
  15. Ahmaruzzaman M, Adv. Colloid Interface Sci., 143, 48, 2008
  16. de Celis J, Amadeo NE, Cukierman AL, J. Hazard. Mater., 161(1), 217, 2009
  17. Chandra TC, Mirna MM, Sudaryanto Y, Ismadji S, Chem. Eng. J., 127(1-3), 121, 2007
  18. Ioannidou O, Zabaniotou A, Renew. Sust. Energ. Rev., 11, 1966, 2007
  19. Namasivayam C, Kavitha D, Sep. Sci. Technol., 39(6), 1407, 2004
  20. Shaarani FW, Hameed BH, Desalination, 255(1-3), 159, 2010
  21. Sathishkumar M, Vijayaraghavan K, Binupriya AR, Stephan AM, Choi JG, Yun SE, J. Colloid Interface Sci., 320(1), 22, 2008
  22. Sathishkumar M, Binupriya AR, Kavitha D, Yun SE, Bioresour. Technol., 98(4), 866, 2007
  23. Kam SK, Kang KH, Lee MG, Appl. Chem. Eng., Submitted (2017).
  24. Moghaddam SS, Moghaddam MRA, Arami M, J. Hazard. Mater., 175(1-3), 651, 2010
  25. Zhao LJ, Zhou JT, Jia YH, Chen JF, J. Hazard. Mater., 181(1-3), 602, 2010
  26. Kim HD, Im YK, Choi JI, Han SJ, Korean Chem. Eng. Res., 54(1), 140, 2016
  27. Liu HL, Lan YW, Cheng YC, Process Biochem., 39(12), 1953, 2004
  28. Yetilmezsoy K, Demirel S, Vanderbei RJ, J. Hazard. Mater., 171(1-3), 551, 2009
  29. Lagergren S, Kunglia Svenska Vetenskapsa-kademiens Handlingar., 24, 1-39(1898).
  30. Ho YS, McKay G, Can. J. Chem. Eng., 76(4), 822, 1998
  31. Wang JP, Feng HM, Yu HQ, J. Hazard. Mater., 144(1-2), 200, 2007
  32. Weber WJ, Morris JC, J. Sanit. Eng. Div. Proc. Am. Soc. Civ. Eng., 90, 79, 1964
  33. Lee SW, Kam SK, Lee MG, J. Environ. Sci. Int., 22, 1161, 2013
  34. Ren L, Zhang J, Li Y, Zhang CL, Chem. Eng. J., 168(2), 553, 2011
  35. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  36. Freundlich HMF, J. Phys. Chem., 57, 385, 1906