Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.5, 679-684, 2017
Fe/BEA 제올라이트 촉매의 N2O/NO 동시 환원 반응에서 금속 담지 방법이 촉매 활성에 미치는 영향
Effect of Metal Loading Methods on the Catalytic Activity for N2O/NO Simultaneous Reduction over Fe/BEA Zeolite Catalyst
Fe/BEA 제올라이트 촉매의 N2O/NO 동시 환원반응에서 Fe이온을 담지하는 방법이 촉매의 활성에 미치는 영향을 고찰하였다. Fe/BEA 제올라이트 촉매는 함침법과 이온교환법으로 제조되었으며, 제조된 촉매의 성능을 확인하기 위하여 암모니아를 환원제로 사용하는 선택적 촉매 환원 반응을 실시하였다. 그 결과 이온교환 촉매는 함침 촉매보다 높은 NO 및 N2O 전환율을 나타내었다. 이러한 촉매 활성의 차이를 규명하기 위하여 XRD, H2-TPR, O2-TPD, XPS와 같은 촉매 특성 분석들이 수행되었다. 이온교환 촉매의 활성 증가는 향상된 환원 특성 및 증가된 산소 탈착 속도에 기인한 것으로 판단되며, 이온교환 촉매 제조시 촉매 활성과 관련이 있는 Fe2+가 함침 촉매에 비해 약 1.6배 이상 형성되는 것을 XPS 분석을 통하여 확인하였다.
The influence of catalytic activity on Fe loading methods over Fe/BEA zeolite catalyst in the simultaneous reduction of N2O/NO has been studied. The Fe/BEA zeolite catalysts were prepared by ion exchange and impregnation. Catalytic tests were carried out in the selective catalytic reduction using ammonia as a reductant to identify the activity of prepared catalysts. The results show that the ion exchanged catalyst exhibited higher NO and N2O conversions than the impregnated catalysts did. To investigate the difference in catalytic activity, we performed various analyses such as XRD, H2-TPR, O2-TPD and XPS. It is considered that the increase in the activity of the ion exchange catalyst is due to improved reducibility and increased oxygen desorption rate. In addition, the ion exchange catalyst was found through the XPS analysis that Fe2+, which is related to the catalytic activity, is formed about 1.6 times more than the impregnated catalyst.
[References]
  1. Li Y, Armor JN, Appl. Catal. B: Environ., 1, L21, 1992
  2. Perez-Ramirez J, Kapteijn F, Schoffel K, Moulijn JA, Appl. Catal. B: Environ., 44(2), 117, 2003
  3. Kim MH, Korean Chem. Eng. Res., 51(2), 163, 2013
  4. Mauvezin M, Delahay G, Coq B, Kieger S, Appl. Catal. B: Environ., 23, L79, 1999
  5. Kapteijn F, Rodriguezmirasol J, Moulijn JA, Appl. Catal. B: Environ., 9(1-4), 25, 1996
  6. Coq B, Mauvezin M, Delahay G, Butet JB, Kieger S, Appl. Catal. B: Environ., 27(3), 193, 2000
  7. Perez-Ramirez J, Kapteijn F, Mul G, Moulijn JA, Chem. Commun., 693-694(2001).
  8. Groves MCE, Sasonow A, J. Integr. Environ. Sci., 7, 211, 2010
  9. Mauvezin M, Delahay G, Kisslich F, Coq B, Kieger S, Catal. Lett., 62(1), 41, 1999
  10. Kinger G, Lugstein A, Swagera R, Ebel M, Jentys A, Vinek H, Microporous Mesoporous Mater., 39, 307, 2000
  11. Canizares P, de Lucas A, Dorado F, Duran A, Asencio I, Appl. Catal. A: Gen., 169(1), 137, 1998
  12. Zhang X, Shen Q, He C, Ma C, Cheng J, Hao Z, Catal. Commun., 18, 151, 2012
  13. Delahay G, Mauvezin M, Coq B, Kieger S, J. Catal., 202(1), 156, 2001
  14. Mauvezin M, Delahay G, Coq B, Kieger S, Jumas JC, Olivier-Fourcade J, J. Phys. Chem. B, 105(5), 928, 2001
  15. Chen BH, Liu N, Liu XY, Zhang RD, Li YP, Li YX, Sun XL, Catal. Today, 175(1), 245, 2011
  16. Coq B, Mauvezin M, Delahay G, Kieger S, J. Catal., 195(2), 298, 2000
  17. Zhu L, Zhong Z, Yang H, Wang C, Wang L, Korean J. Chem. Eng., 34(4), 1229, 2017
  18. Perez-Ramirez J, Kapteijn F, Mul G, Moulijn JA, Appl. Catal. B: Environ., 35(3), 227, 2002
  19. Chen HY, Sachtler WMH, Catal. Today, 42(1-2), 73, 1998
  20. Delahay G, Mauvezin M, Guzman-Vargas A, Coq B, Catal. Commun., 3, 385, 2002
  21. Meng M, Lin PY, Fu YL, Catal. Lett., 48(3-4), 213, 1997
  22. Nedyalkova R, Shwan S, Skoglundh M, Olsson L, Appl. Catal. B: Environ., 138-139, 373, 2013
  23. Long RQ, Yang RT, J. Catal., 207(2), 224, 2002