Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.5, 646-651, 2017
유동층 반응기 희박상 내 탄소나노튜브 응집체의 크기 및 형상 측정
Measurement of Carbon Nanotube Agglomerates Size and Shape in Dilute Phase of a Fluidized Bed
CNT 유동층 반응기(내경 0.15 m, 높이 2.6 m) 희박상 내 CNT 입자(평균입도 291 μm, 벌크밀도 72.9 kg/m3)의 거동을 확인하기 위해 레이저 슬릿광 형상 측정법을 이용하여, CNT 응집체의 크기 및 형태를 측정하였다. 기포유동층 조건에서 CNT 반응기 내 축방향 고체체류량 분포는 하부 농후상과 상부 희박상을 갖는 S자 형태를 보였다. 기체 유속이 증가할수록 비산되는 CNT 응집체의 Heywood 직경과 Feret 직경이 증가하였고, 응집체 내 CNT 입자수가 증가 하였다. 또한, 기체의 유속이 증가할수록 CNT 응집체의 종횡비는 증가하고, 원형도는 감소하였다. CNT 응집체의 원마도와 견고도는 기체의 유속이 증가할수록 감소하였다. 응집체의 형상 분석 정보에 기반한 희박상 내 응집체 형성 원인을 제안하였다.
Size and shape of carbon nanotube (CNT) agglomerates in the dilute phase of a bubbling fluidized bed (0.15 m i.d. × 2.6 m high) have been determined by the laser sheet technique. Axial solid holdup distribution of the CNT particles showed S curve with dense phase and dilute phase in bubbling fluidization regime. Heywood diameter and Feret diameter of the CNT agglomerates in the dilute phase of bubbling fluidized bed increased with increasing gas velocity. The CNT particle number in the agglomerates increased with increasing of gas velocity. Aspect ratio increased and circularity, roundness and solidity decreased with increasing of gas velocity. A possible mechanism of agglomerates formation was proposed based on the obtained information.
[References]
  1. Iijima S, Nature, 354, 56, 1991
  2. Lyu SC, Sok JH, Han JH, KIC News, 12(4), 1, 2009
  3. Jung SW, Dissertation (2016).
  4. Wang Y, Wei F, Luo GH, Yu H, Gu GS, Chem. Phys. Lett., 364(5-6), 568, 2002
  5. Son SY, Lee DH, Kim SD, Sung SW, Park YS, Han JH, Korean J. Chem. Eng., 23(5), 838, 2006
  6. Jeong SW, Lee JH, Kim J, Lee DH, J. Ind. Eng. Chem., 35, 217, 2016
  7. Yu H, Zhang QF, Gu GS, Wang Y, Luo GH, Wei F, AIChE J., 52(12), 4110, 2006
  8. Wang XS, Palero V, Soria J, Rhodes MJ, Chem. Eng. Sci., 61(16), 5476, 2006
  9. Rasband WW, Image J, U.S. National Institute of Health, Bethesda, Maryland, US.(1997) (http://rsb.info.nih.gov/ij/).
  10. Hakim LF, Portman JL, Casper MD, Weimer AW, Powder Technol., 160(3), 149, 2005
  11. Arai Y, Chemistry of Powder Production, Springer Science & Business Media, US., 215-217(2012).
  12. Jeong SW, PhD Dissertation (2015).
  13. Kim S, Park S, Kwon J, Ha KR, Korean Chem. Eng. Res., 54(3), 410, 2016
  14. Kim DW, Kim JS, Korean Chem. Eng. Res., 53(6), 703, 2015
  15. Bokobza L, Polymer, 48(17), 4907, 2007
  16. Horio M, Kuroki H, Chem. Eng. Sci., 49(15), 2413, 1994
  17. Kim SW, Ahn JY, Kim SD, Lee DH, Int. J. Heat Mass Transf., 46(3), 399, 2003