Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.5, 638-645, 2017
기체 유동층에서 입자 비산속도 상관식에 의한 수송속도의 예측
Predicting the Transport Velocity by the Correlation on Particle Entrainment Rate in the Gas Fluidized-bed
기체 유동층에서 입자비산속도에 관한 상관식을 사용하여 입자의 수송속도를 예측하는 모델을 제안하였다. Choi 등과 Li와 Kato의 상관식을 사용하여 emptying time 방법을 모사하였다. 기체속도의 단위에 의한 영향을 배제하기 위해서, 기체속도를 종말속도로 나눈 무차원 속도를 x-축의 값으로 사용하였다. y-축은 입자비산속도의 역수를 사용하였다. 기체속도를 증가시킬 때, y-값의 감소 기울기가 절대값으로 0.398 [m2s/kg]를 나타내는 무차원 속도를 수송속도로 간주 하였다. 모델의 예측값은 고온, 고압에서도 측정값과 비교적 잘 일치하였다.
A model for predicting the transport velocity was proposed using the correlation of the particle entrainment rate in the gas fluidized bed. The emptying time method was simulated using correlations of Choi et al. and Li and Kato. In order to exclude the influence of the unit of the gas velocity, the dimensionless velocity obtained by dividing the gas velocity by the terminal velocity was used as the value of the x-axis. The inverse of the particle entrainment rate was used as the value of the y-axis. When increasing the gas velocity, the non-dimensional velocity, at which the decreasing slope of the y-value is 0.398 [m2s/kg] in absolute value, was considered as the transport velocity. The transport velocity predicted by the model was in good agreement even at high temperature and high pressure.
[References]
  1. Yerushalmi J, Cankurt NT, Powder Technol., 24(2), 187, 1979
  2. Li Y, Kwauk M, in Grace JR, Matsen JM(Ed.), Fluidization, Plenum Press, New York, 537-544(1980).
  3. Avidan AA, Yerushalmi J, Powder Technol., 32(2), 223, 1982
  4. Shin BC, Koh YB, Kim SD, HWAHAK KONGHAK, 22(5), 253, 1984
  5. Han GY, Lee GS, Kim SD, Korean J. Chem. Eng., 2(2), 141, 1985
  6. Chesonis DC, Klinzing GE, Shaah YT, Dassori CG, Ind. Eng. Chem. Res., 29(9), 1785, 1990
  7. Lee GS, Kim SD, Korean Chem. Eng. Res., 20(3), 207, 1982
  8. Perales JF, Coll T, Llop MF, Puigjaner L, Arnaldos J, Casal J, Pergamon Press, New York, 73-78(1991).
  9. Ishii H, Horio M, Adv. Powder Technol., 2(1), 25, 1991
  10. Bi HT, Fan LS, AIChE J., 38(2), 297, 1992
  11. Hirama T, Takeuchi H, Chiba T, Powder Technol., 70(3), 215, 1992
  12. Horio M, Ishii H, Nishimuro M, Powder Technol., 70(3), 229, 1992
  13. Adanez J, Diego LF, Gayan P, Powder Technol., 77(1), 61, 1993
  14. Bi HT, Grace JR, Int. J. Multiph. Flow, 21(6), 1229, 1995
  15. Chehbouni A, Chaouki J, Guy C, Klvana D, Canadian J. Chem. Eng., 73(1), 41, 1995
  16. Namkung W, Kim SW, Kim SD, Chem. Eng. J., 72(3), 245, 1999
  17. Bae DH, Ryu HJ, Shun D, Jin GT, Lee DK, Korean Chem. Eng. Res., 39(4), 456, 2001
  18. Smolders K, Baeyens J, Powder Technol., 119(2-3), 269, 2001
  19. Ryu HJ, Lim NY, Bae DH, Jin GT, Korean Chem. Eng. Res., 41(5), 624, 2003
  20. Balasubramanian N, Srinivasakannan C, Basha CA, Adv. Powder Technol., 16(3), 247, 2005
  21. Du B, Warsito W, Fan LS, Ind. Eng. Chem. Res., 45(15), 5384, 2006
  22. Seo MW, Goo JH, Kim SD, Lee JG, Guahk YT, Rho NS, Koo GH, Lee DY, Cho WC, Song BH, Powder Technol., 264, 583, 2014
  23. Khurram MS, Choi JH, Won YS, Jeong AR, Park YC, Ryu HJ, Yi CK, Korean J. Chem. Eng., 32(12), 2542, 2015
  24. Kim J, Bae DH, Baek JI, Park YS, Ryu HJ, Trans. Korean Hydrogen New Energy Soc., 28(1), 85, 2017
  25. Choi JH, Chang IY, Shun DW, Yi CK, Son JE, Kim SD, Ind. Eng. Chem. Res., 38(6), 2491, 1999
  26. Wen CY, Yu YH, AIChE J., 12(3), 610, 1966
  27. Ma XX, Kato K, Powder Technol., 95(2), 93, 1998
  28. Li JL, Kato K, Powder Technol., 118(3), 209, 2001