Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.5, 629-637, 2017
식료품 분진의 발화 및 폭발 위험성
Hazards of Explosion and Ignition of Foods Dust
식료품 가공 산업에서 분진폭발사고가 자주 발생하고 있으며 배관이나 장치 내의 화염전파에 의한 폭발피해가 증가하고 있다. 그러나 다양한 분체특성으로 인하여 활용 가능한 화재폭발특성자료가 적다는 문제가 있다. 사고발생 빈도가 높고 사회적 수요가 많은 설탕, 옥수수, 밀가루의 발화 위험성과 폭발특성을 실험적으로 조사하였다. 설탕, 옥수수, 밀가루 분진의 평균입경은 27.56, 14.76, 138.5 μm로 나타났으며 이러한 분체조건에서 열중량분석(TGA) 및 시차주사 열량계(DSC)를 사용하여 발화온도를 조사하였다. 최대폭발압력(Pm) 및 폭발지수는(Kst) 각각 7.6, 7.6, 6.1 bar 및 153, 133, 61 [m·bar/s]로서 분진폭발 위험성은 설탕이 가장 높고 밀가루가 가장 작았다. 또한 분진폭발 시의 화염전파로 인한 피해확대 위험성을 평가하기 위하여 분진화염전파의 소요시간을 계산하였으며 화염전파로 인한 폭발피해 위험성은 설탕, 밀가루, 옥수수 분진의 순으로 높았다.
Severe dust explosions occurred frequently in food processing industries and explosion damage increase by flame propagation in pipes or plants. However there are few fire explosion data available due to various powder characteristics. We investigated the characteristics of ignition and explosion on sugar, cornstarch and flour dust with high frequency accidents and high social demand. The measurements showed the median diameter of 27.56, 14.76, 138.5 μm and ignition temperature has been investigated using by thermo-gravimetric analysis (TGA) and differential scanning calorimeter (DSC). The maximum explosion pressure (Pm) and dust explosion index (Kst) of sugar, cornstarch and flour are 7.6, 7.6, 6.1 bar and 153, 133, 61 [m·bar/s], respectively. The flame propagation time in duct was calculated in order to evaluate the damage increase due to flame propagation during dust explosion. The explosion hazard increase due to flame propagation was higher in the order of sugar, flour and cornstarch dust.
[References]
  1. Yuan Z, Khakzad N, Khan F, Amyotte P, Process Saf. Environ. Protect., 98, 57, 2015
  2. Theimer OF, Powder Technol., 8(3-4), 137, 1973
  3. CSB, “Combustible Dust Hazard Study,” U.S. Chemical Safety Board, Washington D.C., (2006).
  4. Joseph G, J. Hazard. Mater., 142(3), 589, 2007
  5. Blair AS, J. Loss Prev. Process Ind., 20(4-6), 523, 2007
  6. Baybutt P, J. Loss Prev. Process Ind., 43, 537, 2016
  7. Database for Major Industrial Accidents, Korea Occupational Safety and Health Agency (1988~2016).
  8. Ramirez A, Garcia-Torrent J, Aguado PJ, J. Hazard. Mater., 168(1), 115, 2009
  9. Proust C, Veyssiere B, Combust. Sci. Technol., 62, 149, 1988
  10. Proust C, J. Loss Prev. Process Ind., 19(2-3), 104, 2006
  11. Mazurkiewicz J, Jarosinski J, Wolanski P, Arch. Combust., 13(3-4), 189, 1993
  12. Encinar JM, Beltran FJ, Gonzalez JF, Moreno MJ, J. Chem. Technol. Biotechnol., 70(4), 400, 1997
  13. Wang SF, Pu YK, Jia F, Gutkowski A, Jarosinski J, Combust. Sci. Technol., 178(10-11), 1957, 2006
  14. ASTM E537-07, The American Society for Testing and Materials(2007).
  15. ASTM E1226, The American Society for Testing and Materials(1988).
  16. Han OS, Lee KW, Korean Chem. Eng. Res., 54(3), 367, 2016
  17. Ramirez A, Garcia-Torrent J, Tascon A, J. Hazard. Mater., 175(1-3), 920, 2010
  18. Zhang Q, Zhang B, J. Loss Prev. Process Ind., 33, 23, 2015
  19. Bartknecht W, “Dust explosions : Course, Prevention, Protection," Springer-Verlag, 56-80(1989).
  20. Serafin J, Bebcak A, Bernatik A, Lepik P, Mynarz M, Pitt M, J. Loss Prev. Process Ind., 26(1), 209, 2013
  21. Eckhoff RK, “Dust Explosions in the Process Industries-3rd ed.,” Gulf professional publishing, 340-341(2003).
  22. Proust C, Accorsi A, Dupont L, J. Loss Prev. Process Ind., 20(4-6), 599, 2007
  23. Fumagalli A, Derudi M, Rota R, Copelli S, J. Loss Prev. Process Ind., 44, 311, 2016