Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.5, 618-622, 2017
옥탄가 변화에 따른 가솔린의 폭발한계 및 최소산소농도 측정
The Measurement of the Explosion Limit and the Minimum Oxygen Concentration of Gasoline According to Variation in Octane Number
가솔린은 가정 및 차량, 선박, 산업용 에너지원으로 산업 전반에 널리 사용되고 있는 물질로서, 화재 및 폭발의 위험성이 매우 크다. 가솔린의 폭발위험성을 고찰하기 위하여 옥탄가에 따라 구분되는 PG, MG 및 RG를 시료로 하여 산소농도의 변화에 따른 폭발한계를 측정하였으며, 산소농도 21%인 공기 중의 폭발한계는 각각 1.5~10.9%, 1.4~8.1%,1.3~7.6%를 구하였고, MOC를 측정한 결과 실험시료 모두 10.9%를 나타내었다. 본 연구를 통하여 실험에 의한 폭발 한계의 측정값이 현재 통용되는 가솔린의 MSDS에 제시된 1.2%~7.6% 보다 넓은 폭발한계를 나타내고 있으므로 실험에 의한 측정치가 가솔린을 사용하는 공정에 있어서 화재 및 폭발을 방지하기 위한 중요한 기초자료가 될 것으로 사료된다.
Gasoline is a widely used product as a source for energy in homes, the automotive industry, and for industrial power generation, and it is also a product with a high risk of fire and explosion. In this study, to examine the risk for explosion for gasoline, PG, MG and RG, which are categorized according to octane number, were used as test specimens to measure their explosion limit according changes in oxygen concentration. The explosion limit for 21% oxygen concentration in air were confirmed to be 1.5~10.9%, 1.4~8.1%, and 1.3~7.6%, respectively, and the MOC for each of the test sample were confirmed to be 10.9%. The explosion limit measured in the test performed in this study confirmed between a 1.2%~7.6% wider explosion limit for the currently accepted MSDS for gasoline, and therefore it is considered that the results of this study can provide significant reference for preventing fires and explosions for process used gasoline.
[References]
  1. Kim WK, Kim JH, Choi JW, Fire Science and Engineering, 29(6), 20, 2015
  2. Choi IG, Cho IK, Mok YS, Lee DH, Choi JW, Ha DM, J. Korean Ins. Gas, 2(2), 55, 1998
  3. Choi JW, Mok YS, Park SH, J. Korean Soc. Safety, 16(3), 109, 2001
  4. Lim WS, Mok YS, Choi JW, J. Korean Soc. Safety, 19(3), 65, 2004
  5. Oh S, Yeo YK, Korean Chem. Eng. Res., 45(3), 234, 2007
  6. Park HJ, Choi JW, Kim SD, Korean Chem. Eng. Res., 48(4), 450, 2010
  7. Ha DM, J. Korean Ins. Gas, 15(4), 44, 2011
  8. Meyer E, “Chemistry of Hazardous Materials,” 2nd ed., Prentice- Hall, 33-73(1990).
  9. Lee HP, Son KH, Kim DW, Song YH, Kim SW, “Combustion Engineering,” Hwasumok, 256-258 (2015).
  10. Ha DM, Jeong KS, ire Science Engineering, 19(2), 1, 2005
  11. Park SM, Fire Science Engineering, 2(3), 40, 2001
  12. Ha DM, Choi YC, Lee SJ, Fire Science Engineering, 2003(4), 236, 2003
  13. Ha DM, J. Korean Ins. Gas, 19(2), 5, 2015
  14. Ha DM, Fire Science Engineering, 27(3), 47, 2013
  15. Boo TS, Pukyong National University, 6-10(2015).
  16. Kim YM, Pukyong National University, 3-5(2014).
  17. Jang WS, National University, 4-6(2006).
  18. MSDS, http://msds.kosha.or.kr/kcic/msdsdetailGet.do, KOSHA.
  19. Kim JH, Pukyong National University, 7-17(2013).
  20. Mizutani T, Matsui H, Research Reports of the National Institute of Industrial Safety, NIIS-RR-2000(2001).
  21. Kim TG, Pukyong National University, 33-36(2007).