Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.4, 530-534, 2017
Chitosan as a Flocculant: An Approach to Improve its Solubility for Efficient Harvesting of Microalgae
Chitosan is a promising flocculant for microalgae harvesting, but its scale-up application is not economically supported yet. Low solubility of chitosan in microalgae suspension demands high dosage (as a flocculant) to destabilize the cells, and thus, increases the cost of microalgae harvesting. This study identifies efficient solvents for the chitosan, and optimizes the concentration of solvents and chitosan dose to improve the harvesting efficiency. Chitosan was dissolved in different acids, and subsequently used as a flocculant. The flocculant efficacy was measured in terms of harvesting efficiency and reduction in chemical oxygen demand (COD) of the microalgae suspension. It was found that chitosan dissolved in 0.05 M HCl showed the highest harvesting efficiency (89 ± 0.87%) at only 30 mg/L of dosage. In comparison, 270 mg/L of FeCl3·6H2O was required to attain 86 ± 0.083% of the harvesting efficiency. H2SO4 dissolved chitosan required high flocculant dose (150 mg/L) and resulted in relatively low harvesting efficiency (77±0.11%). It was concluded that the efficacy of chitosan is solvent dependent, and the selection of proper solvent can decrease the dosage requirement for microalgae harvesting.
[References]
  1. Granados MR, Acien FG, Gomez C, Fernandez-Sevilla JM, Grima EM, Bioresour. Technol., 118, 102, 2012
  2. Kanghoon C, Jihyun L, Jaemin J, Jin WK, Korean Chem. Eng. Res., 54(3), 310, 2016
  3. Feng YJ, Li C, Zhang DW, Bioresour. Technol., 102(1), 101, 2011
  4. Park YB, Lim H, Woo HC, Korean Chem. Eng. Res., 54(1), 94, 2016
  5. Birjandi N Younesi H, Bahramifar N, Ghafari S, Zinatizadeh AA, Sethupathi S, J. Environ. Sci., 48, 1573, 2013
  6. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  7. Demirci S, Erdogan B, Ozcimder R, J. Water Res., 32, 1495, 1998
  8. Harith ZT, Yusoff FM, Mohamed MS, J. Biotechnol., 21, 5971, 2009
  9. Sema S, Rosa T, Carles IS, J. Appl. Phycol., 24, 1067, 2012
  10. Huang C, Chen S, Pan JR, Water Res., 34, 1057, 2000
  11. Heasman M, Diemar J, Connor W, Sushames T, FoulkesL, Nell JA, Aqua Res., 31, 637, 2000
  12. Kim SH, Moon BH, Leeb HI, J. Microchem., 68, 197, 2001
  13. Lee A, Lewis D, Ashman P, J. Appl. Phycol., 21, 559, 2009
  14. Naim R, Muhammad SR, Jong IH, Chem. Eng. J., 226, 238, 2013
  15. Lee HS, Parameswaran P, Marcus KA, Torres CI, Rittmann BE, J. Water Res., 42, 1501, 2008
  16. Lee SJ, Kim SB, Kim JE, Kwon GS, Yoon BD, J. Appl. Microbiol., 27, 14, 1998
  17. Rashid N, Rehman SU, Han JI, Process Biochem., 48(7), 1107, 2013
  18. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N, Biotechnol. Prog., 24(4), 815, 2008
  19. McGarry MG, J. Water Pol., 42, 191, 1970
  20. Moheimani NR, Borowitzka MA, J. Appl. Phycol., 18, 703, 2006
  21. Renault F, Sancey B, Badot PM, Crini G, J. Ceram., 45, 1337, 2009
  22. SchenK PM, Thomas-Hall SR, Stephens E, Bio. Energ. Res., 1, 20, 2008
  23. Sheehan J, Dunahay T, Benemann, J, Roessler P, National Ren. Energ. Res., 248-282(1998).
  24. Sheng QZ, J. Sol-Gel Sci. Technol., 50, 111, 2009
  25. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ, J. Photochem. Photobiol., 162, 545, 2004
  26. Papazi A, Makridis P, Divanach P, J. Appl. Phycol., 22, 349, 2010
  27. Park J, Craggs BK, Shilton RJ, Bioresour. Technol., 1, 35, 2011
  28. Uduman N, Bourniquel V, Danquah MK, Hoadley AFA, Chem. Eng. J., 174(1), 249, 2011
  29. Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC, Carbohydr. Polym., 57, 435, 2004
  30. Ahmad AL, Yasi NHM, Dere CJCJK, J. Chem. Eng., 173, 879, 2011
  31. Banerjee C, Gupta P, Mishra S, Sen G, Shukla P, Bandopadhya R, J. Biol., 51, 456, 2012