Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.4, 520-529, 2017
Viscometric Studies of Molecular Interactions in Binary Mixtures of Formamide with Alkanol at 298.15 and 308.15 K
Viscosity data were measured at 298.15 K and 308.15 K for formamide + 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol or 2-methyl-2-propanol mixtures. For an equimolar mixture, deviation in viscosity follows the sequence: 2-methyl-2-propanol >2-methyl-1-propanol>1-butanol>2-propanol>1-propanol. The viscosity data were further analyzed in terms of graph theory. Free energy of activation was also calculated from experimental viscosity data along with previously reported excess volume data. The deviation in viscosity and free energy of activation were fitted to Redlich-Kister polynomial equation. The viscosity data were also correlated by correlations like Grunberg-Nissan, Tamura-Kurata, Hind- McLaughlin-Ubbelohde, and Katti-Chaudhari relation. Various adjustable parameters, G12, T12, H12, and Wvis/RT, of various correlations were used to predict viscosity deviation of binary mixtures. Positive value of G12 indicates strong interaction in the studied systems. Grunberg-Nissan relation has lowest deviation among the four correlations for formamide+ 1-propanol or 2-propanol mixtures; and for mixtures of formamide with 1-butanol or 2-methyl- 1-propanol, Tamura- Kurata has lowest deviation. Grunberg-Nissan gives lowest deviation for formamide + 2-methyl -2-propanol mixtures.
[References]
  1. Iloukhani H, Mohammadlou ZB, Arabian Journal of Chemistry, In press. http://dx.doi.org/10.1016/j. arabjc.2016.12.004.
  2. Almasi M, J. Chem. Thermodyn., 69, 101, 2014
  3. Almasi M, J. Chem. Thermodyn., 69, 106, 2014
  4. Mohammad AA, Alkhaldi KHAE, Altuwaim MS, Al-Jimaz AS, J. Chem. Thermodyn., 56, 113, 2013
  5. Kondaiah M, Sreekanth K, Kumar SD, Rao KD, J. Solution Chem, 42, 494, 2013
  6. Habibullah M, Rahman IMM, Uddin MA, Anowar M, Alam M, Iwakabe K, Hasegawa H, J. Chem. Eng. Data, 58(11), 2887, 2013
  7. Rajagopal K, Chenthilnath S, Nain AK, J. Solution Chem, 41, 1401, 2011
  8. Awasthi A, Awasthi A, Thermochim. Acta, 537, 57, 2012
  9. Marcus Y, “Introduction to Liquid State Chemistry,” New York, Wiley Interscience(1977).
  10. Nain AK, Fluid Phase Equilib., 265(1-2), 46, 2008
  11. Garcia B, Alcalde R, Leal JM, Matos JS, J. Chem. Soc.-Faraday Trans., 92(4), 3347, 1996
  12. Marigliano ACG, Solimo HN, J. Chem. Eng. Data, 47(4), 796, 2002
  13. Rani M, Maken S, J. Ind. Eng. Chem., 19(5), 1760, 2013
  14. Rani M, Maken S, J. Ind. Eng. Chem., 18(5), 1694, 2012
  15. Rani M, Agarwal S, Lahot P, Maken S, J. Ind. Eng. Chem., 19(5), 1715, 2013
  16. Rani M, Maken S, Korean J. Chem. Eng., 30(8), 1636, 2013
  17. Rani M, Maken S, Thermochim. Acta, 559, 98, 2013
  18. Rani M, Gahlyan S, Om H, Verma N, Maken S, J. Mol. Liq., 194, 100, 2014
  19. Rani M, Gahlyan S, Gaur A, Maken S, Chinese J. Chem. Eng., 23, 689, 2015
  20. Riddick JA, Bunger WB, Sakano TK, Physical Properties and Methods of Purification, fourth ed. New York, Wiley(1986).
  21. Cases AM, Marigliano GAC, Bonatti CM, Solimo HN, J. Chem. Eng. Data, 46, 712, 2001
  22. Nain AK, Fluid Phase Equilib., 265(1-2), 46, 2008
  23. Marigliano ACG, Solimo HN, J. Chem. Eng. Data, 47(4), 796, 2002
  24. Roy MN, Sarkar BK, Chanda R, J. Chem. Eng. Data, 52(5), 1630, 2007
  25. Shukla RK, Kumar A, Awasthi N, Srivastava U, Gangwar VS, Exp. Therm. Fluid Sci., 37, 1, 2012
  26. Zarei HA, Asadi S, Iloukhani H, J. Mol. Liq., 141, 25, 2008
  27. Jimenez E, Cabanas M, Segade L, Garcia-Garabal S, Casas H, Fluid Phase Equilib., 180(1-2), 151, 2001
  28. Nain AK, J. Mol. Liq., 140, 108, 2008
  29. Aralaguppi MI, Baragi JG, J. Chem. Thermodyn., 38(4), 434, 2006
  30. Bhardwaj U, Maken S, Singh KC, J. Chem. Eng. Data, 41(5), 1043, 1996
  31. Riddick JA, Bunger WB, Sakano TK, Wiley, New York, 1(1986).
  32. Anson A, Garriga R, Martinez S, Perez P, Gracia M, J. Chem. Eng. Data, 50(2), 677, 2005
  33. Prasad TEV, Sravani Y, Ranjita VS, Prasada DHL, Fluid Phase Equilib., 249(1-2), 49, 2006
  34. Dubey GP, Sharma M, Oswal S, J. Chem. Thermodyn., 41(7), 849, 2009
  35. Rajagopal K, Chenthilnath S, J. Mol. Liq., 155, 2028, 2010
  36. Kijevcanin ML, Radovic IR, Djordjevic BD, Tasic AZ, Serbanovic SP, Thermochim. Acta, 525(1-2), 114, 2011
  37. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  38. Nain AK, Fluid Phase Equilib., 259(2), 218, 2007
  39. Maken S, Deshwal BR, Chadha R, Anu, Singh KC, Kim H, Fluid Phase Equilib., 235, 4249, 2005
  40. Huggins ML, J. Phys. Chem., 74, 371, 1970
  41. Huggins ML, Polymer, 12, 389, 1971
  42. Singh PP, Maken S, Pure Appl. Chem., 66, 449, 1994
  43. Harary F, Graph theory Reading, M A Addison Wesley (1969).
  44. Kier LB, Physical chemical properties of drugs. In: S. H. Yalkowaski AAS, S.C. Valvani (Eds.) editor. New York, Bessel, Marcel Dekker Inc., p. 295-297(1980).
  45. Balaban AT, Chemical Applications of Graph Theory. London: Academic Press(1976).
  46. Rouvray DH, Royal Institute of Chemistry, Reviews, 4, 173-195(1971).
  47. Kier LB, Hall LH, Molecular Connectivity in Chemistry and Drug Research, New York: Academic Press(1976).
  48. Grunberg L, Nissan AH, Nature, 164, 799, 1949
  49. Tamura M, Kurata M, Bull. Chem. Soc. Jpn., 25, 32, 1952
  50. Hind RK, McLaughlin E, Transactions of the Faraday Society, 56, 328-30(1960).
  51. Katti PK, Chaudhri MM, J. Chem. Eng. Data, 9, 442, 1964
  52. Katti PK, Chaudhri MM, J. Chem. Eng. Data, 11, 593, 1966
  53. Fort RJ, Moore WR, Transactions of the Faraday Society, 62, 1112-1119(1966).
  54. Ramamoorthy K, Indian J. of Pure and Applied Physsics, 11, 554-555 (1973).