Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.4, 483-489, 2017
Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery
The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (~80°C). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.
[References]
  1. Xiao Q, Sohn Z, Chen Z, Toso D, Mechlenburg M, Zhou ZH, Poirier E, Dailly A, Wang H, Wu Z, Cai M, Lu Y, Angew. Chem.-Int. Edit., 51, 10546, 2012
  2. Sohn H, Chen Z, Jung YS, Xiao Q, Cai M, Wang H, Lu Y, J. Mater. Chem., 1, 4539, 2013
  3. Jin EM, Lee GE, Na BK, Jeong SM, Korean Chem. Eng. Res., 55(2), 163, 2017
  4. Kang KY, Choi MG, Lee YG, Kim KM, Korean Chem. Eng. Res., 49(5), 541, 2011
  5. Ji X, Nazar LF, J. Mater. Chem., 20, 9821, 2010
  6. Manthiram A, Fu Y, Su YS, Acc. Chem. Res., 46, 1125, 2013
  7. Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ, J. Power Sources, 89(2), 219, 2000
  8. Chen S, Dai F, Gordin ML, Wang D, RSC Adv., 3, 3540, 2013
  9. Sohn H, Gordin ML, Regula M, Kim DH, Jung YS, Song JX, Wang DH, J. Power Sources, 302, 70, 2016
  10. Sohn H, Gordin ML, Xu T, Chen S, Lv D, Song J, Manivannan A, Wang D, ACS Appl, 6, 7596, 2014
  11. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E, J. Electrochem. Soc., 135, 1045, 1988
  12. Mikhaylik YV, Akridge JR, J. Electrochem. Soc., 151(11), A1969, 2004
  13. Liang C, Dudney NJ, Howe JY, Chem. Mater., 21, 4724, 2009
  14. Lai C, Gao XP, Zhang B, Yan TY, Zhou Z, J. Phys. Chem., 113, 4712, 2009
  15. Zhang B, Qin X, Li GR, Gao XP, Energy Environ. Sci., 3, 1531, 2010
  16. Liang XA, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J, J. Power Sources, 196(7), 3655, 2011
  17. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF, Angew. Chem.-Int. Edit., 51, 3591, 2012
  18. Xu T, Song J, GordiN ML, Sohn H, Yu Z, Chen S, Wang D, ACS Appl. Mater. Interfaces, 5, 11355, 2013
  19. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT, J. Electrochem. Soc., 150(6), A800, 2003
  20. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS, Nature, 448, 457, 2007
  21. Agostini M, Hassoun J, Sci. Rep., 5, 7591, 2015
  22. Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chem J, Ng SH, Chou SL, Liu HK, Carbon, 46, 229, 2008
  23. Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J, J. Mater. Chem., 21, 16603, 2011
  24. Sun XG, Wang X, Mayes RT, Dai S, ChemSusChem, 5, 2079, 2012
  25. Gordin ML, Dai F, Chen S, Xu T, Song J, Tang D, Azimi N, Zhang Z, Wang D, ACS Appl. Mater. Interfaces, 6, 8006, 2014