Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.4, 456-466, 2017
교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석
Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill
이 연구는 교반볼밀을 이용한 금속기반 복합재 제조공정에 있어서 분쇄매체의 차이에 의한 입자형상의변화를 관찰하고, 볼 거동의 DEM시뮬레이션을 행하였다. 교반볼밀에서 볼 거동의 3차원 시뮬레이션을 통해 분쇄커니즘을 규명하기 위하여 분쇄매체의 힘, 운동에너지, 매체 운동속도 등을 계산하였다. 또한 복합재 제조를 위한 험조건을 이전의 다른 볼밀에서에 같이 교반볼밀 회전속도를 변화시켰고, 볼 재질, 운동속도, 마찰계수 등도 동일한 조건으로 변화시키면서 투입되는 에너지의 변화량도 계산하였다. 교반볼밀의 회전속도가 증가함에 따라, 분쇄매와 매체, 매체와 벽면, 그리고 매체와 교반기 사이의 충격에너지가 증가하는 것을 정량적으로 계산 할 수 있었다.또한 같은 실험 조건에서 입자형상 변화를 명확하게 분석 할 수 있었으며, 볼 거동이 입자형상 변화에 매우 큰 영 을 미치는 것을 알 수 있었다.
This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.
[References]
  1. Mikli V, Kaerdi H, Kulu P, Besterci M, Proc. Estonian Acad. Sci. Eng., 7(1), 22, 2001
  2. Pavlovic MG, Pavlovic LJ, Maksimovic VM, Nikolic ND, Popov KI, Int. J. Electrochemical Sci., 5, 1862, 2010
  3. Lee GG, Hashimoto H, Watanabe R, Mater. Trans., JIM, 36, 548, 1995
  4. Chikosha S, Shabalala TC, Chikwanda HK, Powder Technol., 264, 310, 2014
  5. Choi HK, Lee W, Kim DU, Kumar S, Ha JH, Kim SS, Lee JG, Korean J. Chem. Eng., 26(1), 300, 2009
  6. Ichinkhorloo B, Bor A, Uyanga B, Lee J, Choi H, Korean J. Mater. Res., 26(11), 611, 2016
  7. Kim S, Choi JY, Shin H, J. Korean Soc. Qual. Manag., 42(2), 579, 2014
  8. Shin H, Fundamentals of Ceramic Engineering, Books Hill, (2009).
  9. Shin H, Lee S, Jung HS, Kim JB, Ceram. Int., 39, 8963, 2013
  10. Choi H, Kim S, Hwang JY, J. Miner. Soc. Korea, 20(2), 135, 2007
  11. Choi H, Wang L, Korean J. Mater. Res., 17(10), 532, 2007
  12. Choi H, Lee W, Kim S, Adv. Powder Technol., 20, 305, 2009
  13. Jayasundara CT, Yang RY, Yu AB, Miner. Eng., 33, 66, 2012
  14. Choi H, Wang L, Korean J. Mater. Res., 17(10), 532, 2007
  15. Choi H, Lee W, Kim S, Chung H, Int. J. Appl. Technol., 8(5), 1147, 2011
  16. Sakuragi S, Bor A, Lee J, Choi H, Par. Aerosol Res., 11(1), 9, 2015
  17. Bor A, Sakuragi S, Lee J, Choi H, Korean J. Mater. Res., 25(6), 305, 2015
  18. Park YH, Jeong HY, Lee BW, Kim SK, Kim WY, Bae CH, Korean Inst. Met. Mater., 34(7), 896, 1996
  19. Ryu H, Korean J. Mater. Res., 7(4), 339, 1997
  20. Mori H, Mio H, Kano J, Saito F, Powder Technol., 143, 230, 2004
  21. Kim SS, Park GT, Chung HS, Choi HK, Korean Soc. Mech. Eng., 5, 154, 2008
  22. Choi H, Kim S, Hwang JY, J. Miner. Soc. Korea, 20(2), 135, 2007
  23. Sim CH, Korean Chem, Eng. Res., 54(1), 44, 2016