Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.3, 419-425, 2017
벤치급 CO2 포집공정에서 흡수반응기의 내부구조에 따른 K-계열 고체흡수제의 성능평가
Performance Evaluation of K-based Solid Sorbents Depending on the Internal Structure of the Carbonator in the Bench-scale CO2 Capture Process
본 연구에는 벤치급 건식 CO2 포집 성능평가 장치에서 흡수반응기 내부의 구조와 형태에 따른 K-계열 흡수제 (KEP-CO2P2, 한국전력공사 전력연구원)의 성능특성을 확인하였다. 흡수반응기 혼합영역(mixing-zone)에 구조와 형태가 다르게 제작된 두 종류의 열교환기가 적용되었으며, 각각 CASE 1과 CASE 2로 나뉘어 동일한 조업조건으로 연속운 전을 수행하였다. 연속운전동안 흡수반응 온도는 75~80 °C, 재생반응 온도는 190~200 °C, 그리고 반응기체(CO2) 농도는 12~14 vol%으로 설정하였다. 특히 흡수제의 흡수능 비교를 위해 흡수반응기 혼합영역의 차압을 400~500 mmH2O로 유지하며 운전하였다. 또한 반응 후 채집한 시료는 반응성 비교를 위해 TGA를 이용하여 물성분석을 하였다. CASE 1 실험에서 CO2 제거효율과 동적흡수능은 각각 64.3%, 2.40 wt%으로 산출 되었고, CASE 2 실험에서 CO2 제거효율과 동적흡수능은 각각 81.0%, 4.66 wt%으로 산출되었다. 또한 반응 후 흡수제에 대한 TGA 측정 결과의 무게감량을 이 용하여 흡수제의 동적흡수능을 계산한 결과, CASE 1과 CASE 2 실험에서 반응 후 흡수제의 동적흡수능은 각각 2.51 wt%와 4.89 wt%으로 산출되었다. 결론적으로 동일한 조업조건에서 흡수반응기 내부에 삽입되는 열교환기의 구조와 형태에 따라 흡수제의 성능 차이가 있는 것을 확인하였다.
In this study, the performance characteristics of the K-based sorbents (KEP-CO2P2, KEPCO RI, Korea) has been studied in relation with the heat exchanger structure and shape in a mixing zone of the carbonator in the benchscale dry CO2 capture process. Two types of heat exchangers (different structure and shape) were used in the carbonator as CASE 1 and CASE 2, in which the experiment has been continuously performed under the same operating conditions. During the continuous operation, working temperature of carbonator was 75 to 80 °C, that of regenerator was 190 to 200 °C, and CO2 inlet concentration of the feed gas was 12 to 14 vol%. Especially, to compare the dynamic sorption capacity of sorbents, the differential pressure of the mixing zone in the carbonator was maintained around 400 to 500 mm H2O. Also, solid samples from the carbonator and the regenerator were collected and weight variation of those samples was evaluated by TGA. The CO2 removal efficiency and the dynamic sorption capacity were 64.3% and 2.40 wt%, respectively for CASE 1 while they were 81.0% and 4.66 wt%, respectively for CASE 2. Also, the dynamic sorption capacity of the sorbent in CASE 1 and CASE 2 was 2.51 wt% and 4.89 wt%, respectively, based on the weight loss of the TGA measurement results. Therefore, It was concluded that there could be a difference in the performance characteristics of the same sorbents according to the structure and type of heat exchanger inserted in the carbonator under the same operating conditions.
[References]
  1. Carbon Dioxide Reduction & Sequestration R&D Center “Global Warming, Cause and Measures,” Korea Institute Energy Research(2004).
  2. Wee JH, Kim JL, Song LS, Song BY, Choi KS, "Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage (CCS) Technology to Power Generation and Industry Sectors in Korea,” Korean Society of Environmental Engineers, 961-972(2008).
  3. Jeon EC, Sa JH, J. Env. Hlth. Sci., 36(2), 128, 2010
  4. White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW, J. Air Waste Manage. Assoc., 37, 41, 2013
  5. Lee SC, Choi BY, Lee TJ, Ryu CK, Soo YS, Kim JC, Catal. Today, 111(3-4), 385, 2006
  6. Lee SC, Kim JC, Catal. Surv. Asia, 11, 171, 2007
  7. Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC, Environ. Sci. Technol., 42, 2736, 2008
  8. Lee SC, Chae HJ, Lee SJ, Park YH, Ryu CK, Yi CK, J. Mol. Catal. B-Enzym., 56, 179, 2009
  9. Lee SC, Chae HJ, Choi BY, Jung SY, Ryu CY, Park JJ, Baek JI, Ryu CK, Kim JC, Korean J. Chem. Eng., 28(2), 480, 2011
  10. Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465, 2008
  11. Yi CK, Hong SW, Jo SH, Son JE, Choi JH, Korean Chem. Eng. Res., 43(2), 294, 2005
  12. Yi CK, Jo SH, Seo Y, Moon KH, Yoo JS, Syud. Surf. Sci. Catal., 159, 501, 2006
  13. Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. Greenhouse Gas Control, 1(1), 31, 2007
  14. Yi CK, Jo SH, Seo Y, J. Chem. Eng. Jpn., 41(7), 691, 2008
  15. Yi CK, Korean Ind. Chem. News, 12(1), 30, 2009
  16. Yi CK, Korean Chem. Eng. Res., 48(2), 140, 2010
  17. Kim KC, Kim KY, Park YC, Jo SH, Ryu HJ, Yi CK, Korean Chem. Eng. Res., 48(4), 499, 2010
  18. Kim KC, Park YC, Jo SH, Yi CK, Korean J. Chem. Eng., 28(10), 1986, 2011
  19. Park YC, Jo SH, Park KW, Park YS, Yi CK, Korean J. Chem. Eng., 26(3), 874, 2009
  20. Park YC, Jo SH, Ryu CK, Yi CK, Energy Procedia, 1, 1235, 2009
  21. Park YC, Jo SH, Ryu CK, Yi CK, Energy Procedia, 4, 1508, 2011
  22. Kim K, Yang S, Lee JB, Eom TH, Ryu CK, Jo SH, Park YC, Yi CK, Int. J. Greenhouse Gas Control, 9, 347, 2012
  23. Kim K, Yang S, Lee JB, Eom TH, Ryu CK, Lee HJ, Bae TS, Lee YB, Lee SJ, Korean J. Chem. Eng., 32(4), 677, 2015
  24. Park YC, Jo SH, Lee DH, Yi CK, Ryu CK, Kim KS, You CH, Park KS, Energy Procedia, 37, 122, 2013
  25. Park YC, Jo SH, Bae DH, Min BM, Ryu CK, Yi CK, Int. Conference Clean Eng., 1, 2730, 2014
  26. Park YC, Jo SH, Kyung DH, Kim JY, Yi CK, Ryu CK, Shin MS, Energy Procedia, 63, 2261, 2014
  27. Park YC, Jo SH, Lee SY, Moon JH, Ryu CK, Lee JB, Yi CK, Korean J. Chem. Eng., 33(1), 73, 2016