Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.3, 409-418, 2017
자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증
Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane
자가치유성을 갖는 고분자개질 빙수아스팔트-몬모릴로나이트(MMT) composite 제조를 위하여 양이온(Na+)교환 처리된 K-10 (Na-MMT-K)에 대한 3-aminopropyltriethoxysilane (APS) 개질의 특성을 규명하고 적정개질조건을 FTIR, XRD, NMR 및 TGA 등의 분석을 통하여 제시되었다. APS 개질된 Na-MMT-K (S-Na-MMT-K)에 대한 FTIR 분석에 서 실란화 반응과 관련된 실록산 결합(Si-O), 아민기, -CH2- 및 -OH 기의 피크의 세기를 비교하였다. 그 결과로서 적 정 반응시간, 적정교반시간, 적정농도 및 적정반응온도는 각각 2~3 h, 20 min, 7.5 w/v% 및 50 °C가 도출되었다. 또한 TGA 결과로부터 도출된 적정개질조건도 FTIR 분석에서 도출한 적정개질조건과 거의 일치하였다. 이 도출된 적정개 질조건들은 Lee 등의 XRD 분석에서 제시된 기준(criterion)에 의해 도출된 적정반응시간, 적정교반시간, 적정 APS농 도 및 적정반응온도와 거의 일치하였다. 따라서 XRD 분석에서 제시된 기준(criterion)이 검증되었다.
In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification charcteristics of cation (Na+) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -NH2, -CH2- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and 50 °C, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.
[References]
  1. Zulfiqar S, Kausar A, Rizwan M, Sarwar MI, Appl. Surf. Sci., 255(5), 2080, 2008
  2. Pavlidou S, Papaspyrides CD, Prog. Polym. Sci, 33, 1119, 2008
  3. Bergaya F, Lagaly G, Appl. Clay Sci., 19, 1, 2001
  4. Paiva LB, Morales AR, Diaz FRV, Appl. Clay Sci., 42, 8, 2008
  5. Frost RL, He H, Xi Y, Kloprogge JT, Zhou Q, Martens WN, Yuan P, Clay Clay Min., 54(6), 689, 2006
  6. Bandpei AM, Mohseni SM, Sheikhmohammadi A, Sardar M, Sarkhosh M, Almasian M, Avazpour M, Mosallanejad Z, Atafar Z, Nazari S, SoheilaRezaei, Korean J. Chem. Eng., 34(2), 376, 2017
  7. Kim SW, Korean Chem. Eng. Res., 51(3), 382, 2013
  8. Ray SS, Okamoto M, Prog. Polym. Sci, 28, 1539, 2003
  9. Bikiaris D, Thermochim. Acta, 523(1-2), 25, 2011
  10. Wang JC, Zheng XY, Hao WL, Xu N, Pan XC, Powder Technol., 221, 80, 2012
  11. Xie W, Xie R, Pan WP, Hunter D, Koene B, Tan LS, Vaia R, Chem. Mater., 14, 4837, 2002
  12. He HP, Duchet J, Galy J, Gerard JF, J. Colloid Interface Sci., 288(1), 171, 2005
  13. Avila LR, de Faria EH, Ciuffi KJ, Nassar EJ, Calefi PS, Vicente MA, Trujillano R, J. Colloid Interface Sci., 341(1), 186, 2010
  14. Guimaraes AMF, Ciminelli VST, Vasconcelos WL, Appl. Clay Sci., 42, 410, 2009
  15. Park S, Kim BJ, Seo D, Rhee KY, Lyu YY, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 526, 74, 2009
  16. Piscitelli F, Posocco P, Toth R, Fermeglia M, Pricl S, Mensitieri G, Lavorgna M, J. Colloid Interface Sci., 351(1), 108, 2010
  17. Shanmugharaj AM, Rhee KY, Ryu SH, J. Colloid Interface Sci., 298(2), 854, 2006
  18. Shen W, He HP, Zhu JX, Yuan P, Frost RL, J. Colloid Interface Sci., 313(1), 268, 2007
  19. Shen W, He H, Zhu J, Yuan P, Ma YH. Liang XL, Chin. Sci. Bull., 54, 265, 2009
  20. Wu PX, Dai YP, Long H, Zhu NW, Jai P, Wu JH, Dang Z, Chem. Eng. J., 191, 288, 2012
  21. Wypych F, “Chemical Modification of Clay Surfaces,” In: Wypych F, Satyanarayana KG, (Eds.), Clay Surfaces: Fundamentals and Applications. Elsevier, Amsterdam, pp. 1-56 (2004).
  22. He H, Tao Q, Zhu J, Yuan P, Shen W, Yang S, Appl. Clay Sci., 71, 15, 2013
  23. Park M, J. Phys. Chem. Solids, 65, 499, 2004
  24. Bergaya F, Lagaly G, Appl. Clay Sci., 19, 1, 2001
  25. Herrera NN, Letoffe JM, Putaux JL, David L, Bourgeat-Lami E, Langmuir, 20(5), 1564, 2004
  26. Bertuoli PT, Piazza D, Scienza LC, Zattera AJ, Appl. Clay Sci., 87, 46, 2014
  27. Lee EJ, Lee JH, Park YJ, Yoon YK, Lim KH, Korean Chem. Eng. Res., 55(3), 401, 2017
  28. Gianni AD, Amerio E, Monticelli O, Bongiovanni R, Appl. Clay Sci., 42, 116, 2008
  29. Guimaraes AMF, Ciminelli VST, Vasconcelos W, Appl. Clay Sci., 42, 410, 2009
  30. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C, Compos. Pt. A-Appl. Sci. Manuf., 41, 806, 2010
  31. He HP, Guo JG, Xie XD, Lin HF, Li LY, Clay Clay Min., 37, 337, 2002